Chemistry: molecular biology and microbiology – Carrier-bound or immobilized enzyme or microbial cell;... – Enzyme or microbial cell is immobilized on or in an organic...
Patent
1996-06-06
1998-07-07
Naff, David M.
Chemistry: molecular biology and microbiology
Carrier-bound or immobilized enzyme or microbial cell;...
Enzyme or microbial cell is immobilized on or in an organic...
435174, 435176, 435177, 435178, 435179, 435182, 43524022, 435240243, 156 64, B32B 3100, C12N 1114, C12N 1108
Patent
active
057767483
ABSTRACT:
The disclosed invention is a device for adhering cells in a specific and predetermined position. The device comprises a plate defining a surface and a plurality of cytophilic islands that adhere cells which are isolated by cytophobic regions to which cells do not adhere and further is contiguous with the cytophilic islands. The islands or the regions or both may be formed of a self-assembled monolayer (SAM). Further, the cytophobic regions are wide enough such that less than 10 percent of the cells adhered to the cytophilic islands are allowed to form bridges across the cytophobic regions and contact each other. The device is used in a method for culturing cells on a surface or in a medium and also for performing cytometry. Furthermore, the device is used in immobilization of cells at a surface and for controlling the shape of a cell.
REFERENCES:
patent: 4587213 (1986-05-01), Malecki
patent: 4728591 (1988-03-01), Clark et al.
patent: 4802951 (1989-02-01), Clark et al.
patent: 5079600 (1992-01-01), Schnur et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5202227 (1993-04-01), Matsuda et al.
patent: 5324591 (1994-06-01), Georger, Jr. et al.
patent: 5512131 (1996-04-01), Kumar et al.
E. Kim et al., "Combining Self-Assembled Monolayers of Alkanethiolates on Gold with Anisotropic Etching of Silicon to Generate Controlled Surface Morphologies", J. Electrochem. Soc., vol. 142, No. 2, Feb. 1995.
Walter J. Dressick et al., "Photopatterning and Selective Electroless Metallization of Surface-Attached Ligands", Chem. Mater., 1993, vol. 5, No. 2, pp. 149-151.
David A. Stenger et al., "Coplanar Molecular Assemblies of Amino- and Perfluorinated Alkylsilanes: Characterization and Geometric Definition of Mammalian Cell Adhesion and Growth", J. Am. Chem. Soc., 1992, vol. 114, No. 22, pp. 8435-8442.
Westermark, B., "Growth Control in Miniclones of Human Glial Cells," Experimental Cell Research, 111:295-299 (1978).
Ponten, J. and L. Stolt, "Proliferation Control in Cloned Normal and Malignant Human Cells," Experimental Cell Research 129:367-375 (1980).
Dunn, G.A. and A. F. Brown, "Alignment of Fibroblasts on Grooved Surfaces Described by a Simple Geometric Transformation," J. Cell. Sci., 83:313-340 (1986).
O'Neill, C., P. Jordan, and G. Ireland, "Evidence for Two Distinct Mechanisms of Anchorage Stimulation in Freshly Explanted and 3T3 Swiss Mouse Fibroblasts," Cell, 44:489-496 (1986).
Watt, F. M., "Influence of Cell Shape and Adhesiveness on Stratification and Terminal Differentiation of Human Keratinocytes in Culture," J. Cell Sci. Suppl., 8:313-326(1987).
Clark, P., P. Connoly, A. S. G. Curtis, J. A. T. Dow and C. D. W. Wilkinson, "Topographical Control of Cell Behaviour I. Simple Step Cues," Development, 99:439-448 (1987).
Inoue, T., J. E. Cox, R. M. Pilliar and A. H. Melcher, "Effect of the Surface Geometry of Smooth and Porous-coated Titanium Alloy on the Orientation of Fibroblasts In Vitro," Journal of Biomedical Materials Research, 21:107-126 (1987).
Ireland, G. W., P. Dopping-Hepenstal, P. Jordan and C. O'Neill, "Effect of Patterned Surfaces of Adhesive Islands on the Shape, Cytoskeleton, Adhesion and Behaviour of Swiss Mouse 3T3 Fibroblasts," J. Cell Sci. Suppl., 8:19-33 (1987).
Wood, A., "Contact Guidance on Microfabricated Substrata: The Response of Telost Fin Mesenchyme Cells to Repeating Topographical Patterns," J. Cell Sci., 90:667-681 (1988).
Kleinfeld, D., K. H. Kahler and P. E. Hockberger, "Controlled Outgrowth of Dissociated Neurons on Patterned Substrates," J. Neurosci., 8(11):4098-4120 (1988).
Chehroudi, B., T. R. L. Gould and D. M. Brunette, "Titanium-coated Micromachined Grooves of Different Dimensions Affect Epithelial and Connective-Tissue Cells Differently In Vivo," Journal of Biomedical Materials Research, 24:1203-1219(1990).
Whitesides, G. M. and P. E. Laibinis, "Wet Chemical Approaches to the Characterization of Organic Surfaces: Self-Assembled Monolayers, Wetting, and the Physical-Organic Chemistry of the Solid-Liquid Interface," Langmuir, 6:87-96 (1990).
Matsuda, T., K. Inoue and T. Sugawara, "Development of Micropatterning Technology for Cultured Cells," Transactions of the American Society for Artificial Internal Organs, 36:M559-M562 (1990).
Ingber, D. E., "Fibronectin Controls Capillary Endothelial Cell Growth by Modulating Cell Shape," Proc. Natl. Acad. Sci. (USA), 87:3579-3583 (1990).
Britland, S., P. Clark, P. Connoly and G. Moores, "Micropatterned Substratum Adhesiveness: A Model for Morphogenetic Cues Controlling Cell Behavior,"Experimental Cell Research, 198:124-129 (1992).
Vargo, T. G., P. M. Thompson, L. J. Gerenser, R. F. Valentini, P. Aebischer, D. J. Hook and J. A. Gardella, Jr., "Monolayer Chemical Lithography and Characterization of Fluoropolymer Films," Langmuir, 8:130-134 (1992).
Kumar, A., H. A. Biebuyck, N. L. Abbott and G. M. Whitesides, "The Use of Self-Assembled Monolayers and a Selective Etch to Generate Patterned Gold Features," J. Amer. Chem. Soc., 114(1992).
Harris, A., "Behavior of Cultured Cells on Substrata of Variable Adhesiveness," Experimental Cell Research, 77:285-297 (1973).
O'Neill, C., P. Jordan, P. Riddle, and G. Ireland, "Narrow Linear Strips of Adhesive Substratum are Powerful Inducers of both Growth and Total Focal Contact Area," Journal of Cell Science, 95:577-586 (1990).
Ireland, G.W., P.J.C. Dopping-Hepenstal, P.W. Jordan and C.H. O'Neill, "Limitation of Substratum Size Alters Cytoskeletal Organization and Behavior of Swiss 3T3 Fibroblasts," Cell Biology International Reports, 13:781-790 (1989).
Lopez, G.P., M.W. Albers, S.L. Schreiber, R. Carroll, E. Peralta and G.M. Whitesides, "Convenient Methods of Patterning the Adhesion of Mammalian Cells to Surfaces Using Self-Assembled Monolayers of Alkanethiols on Gold," Journal of American Chemical Society, 115:5877-5878 (1993).
Ingber Donald E.
Kumar Amit
Lopez Gabriel P.
Singhvi Rahul
Stephanopoulos Gregory N.
Children's Medical Center Corporation
Massachusetts Institute of Technology
Naff David M.
President and Fellows of Harvard College
Ware Deborah K.
LandOfFree
Method of formation of microstamped patterns on plates for adhes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of formation of microstamped patterns on plates for adhes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of formation of microstamped patterns on plates for adhes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1204527