Method of fabricating transistor or other electronic device usin

Fishing – trapping – and vermin destroying

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

437237, 437239, 437935, 437983, 437186, 437 41, H01L 21465

Patent

active

060009470

ABSTRACT:
A scanning probe microscope is used to fabricate a gate or other feature of a transistor by scanning a silicon substrate in which the transistor is to be formed. An electric field is created between the cantilever tip and the silicon substrate, thereby causing an oxide layer to be formed on the surface of the substrate. As the tip is scanned across the substrate the electric field is switched on and off so that an oxide pattern is formed on the silicon. Preferably, the oxide pattern is formed on a deposited layer of amorphous silicon. Extremely small features, e.g., a MOSFET gate having a length of 0.2 .mu.m or less can be fabricated by this technique.

REFERENCES:
patent: 4479831 (1984-10-01), Sandow et al.
patent: 4724318 (1988-02-01), Binning
patent: 5138174 (1992-08-01), Tang
patent: 5209117 (1993-05-01), Bennett
patent: 5210410 (1993-05-01), Barrett
patent: 5221415 (1993-06-01), Albrecht et al.
patent: 5227626 (1993-07-01), Okada et al.
patent: 5231286 (1993-07-01), Kajimura et al.
patent: 5254854 (1993-10-01), Betzig
patent: 5345815 (1994-09-01), Albrecht et al.
patent: 5354985 (1994-10-01), Quate
patent: 5406832 (1995-04-01), Gamble et al.
patent: 5444244 (1995-08-01), Kirk et al.
patent: 5537863 (1996-07-01), Fujiu et al.
patent: 5618760 (1997-04-01), Soh et al.
Kremer et al "Nonometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons", submitted with IDS for application 08/297,691 on Aug. 26, 1994.
"Integrated optics and new wave phenomena in optical waveguides", P.K. Tien, Reviews of Modern Physics, vol. 49, No. 2, Apr. 1977, pp. 361-362.
"Integrated Acoustooptic Circuits and Applications", Chen S. Tsai, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, No. 5, Sep. 1992, pp. 529-554.
"Guided-Wave Acousto-Optics Interactions, Devices and Applications", Chen S. Tsai (Ed.), Springer-Verlag, 1990, pp. 79 and 250-256.
"Near-Field subwavelength micropattern generation: Pipette guided argon fluoride excimer laser microfabrication", M. Rudman et al., J. Appl. Phys. 72(9), Nov. 1, 1992, pp. 4379-4383.
"Optical characteristics of 0.1.mu.m circular apertures in a metal film as light sources for scanning ultramicroscopy", U.Ch. Fischer, J. Vac. Sci. Technol. B 3(1), Jan./Feb. 1985, pp. 386-390.
"Near-field optical microscope using a slicon-nitride probe", N.F. van Hulst et al., Appl. Phys. Lett. 62(5), Feb. 1, 1993, pp. 461-463.
"Near-field optical scanning microscopy in reflection", U.Ch. Fischer, Appl. Phys. Lett. 52(4), Jan. 25, 1988, pp. 249-251.
"Micron-Size Optical Waveguide for Optoelectornic Integrated Circuits", T. Nagata et al., Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials, Makuhari, 1993, pp. 1047-1049.
"A Light Source Smaller Than the Optical Wavelength", K. Lieberman et al., Science, vol. 247, Jan. 5, 1990, pp. 59-61.
"Near-field differential scanning optical microscope with atomic force regulation", R. Toledo-Crow et al., Appl. Phys. Lett. 60(24), Jun. 15, 1992, pp. 2957-2959.
"Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit", Eric Betzig et al., Science vol. 257, 10 Jul. 1992, pp. 189-195.
"Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale", E. Betzig et al., Science vol. 251, Mar. 22, 1991, pp. 1468-1470.
"Combined shear force and near-field scanning optical microscopy", E. Betzig et al., Appl. Phys. Lett. 60(20), May 18, 1992, pp. 2484-2486.
N. Barniol et al., "Modification of HF-Treated Silicon (100) Surfaces by Scanning Tunneling Microscopy in Air Under Imaging Conditions", Appl. Phys. Lett., vol. 61, No. 4, Jul. 27, 1992, 1992 American Institute of Physics, pp. 462-464.
J.A. Dagata et al., "Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air", Appl. Phys. Lett., vol. 56, No. 20, May 14, 1990, pp. 2001-2003.
J.A. Dagata et al., Pattern Generation on Semiconductor Surfaces by a Scanning Tunneling Microscope Operating in Air, J. Vac. Sci. Technol. B, vol. 9, No. 2 Mar./Apr. 1991, pp. 1384-1388.
Sugimura, et al., "Maskless Patterning of Silicon Surface Based on Scanning Tunneling Microscope Tip-Induced Anodization and Chemical Etching", Appl. Phys. Lett., vol. 65, No. 12, Sep. 19, 1994, pp. 1569-1571.
Wang et al., "Nanometer-Structure Writing on SI (100) Surfaces Using a Non-Contact-Mode Atomic Force Microscope", Appl, Phys. Lett., vol. 65, No. 11, Sep. 12, 1994, pp. 1415-1417.
Wolf et al., "Silicon Processing for the VLSI ERA vol. 1: Process Technology", Lattice Press, 1986, pp. 209-210.
"Thermomechanical writing with an atomic force microscope tip", H.J. Mamin et al., Appl. Phys. Lett. 61(8), Aug. 24, 1992, pp. 1003-1005.
"The atomic force microscope used as a powerful tool for machining surfaces", T.A. Jung et al., Elsevier Science Publishers, 1992, pp. 1446-1451.
"25 nm chromium oxide lines by scanning tunneling litography in air", H.J. Song et al., 38th Int'l. Symp. on Electron, Ion and Photon Beams, New Orleans, LA, May 31-Jun. 3, 1994, p. 16 pages.
"Nanometer-scale lithography using the atomic force microscope", A. Majumdar et al., Appl. Phys. Lett. 61(19), Nov. 9, 1992, pp. 2293-2295.
"Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography", H. Sugimuar et al., Appl. Phys. Lett. 62(9), Aug. 30, 1993, pp. 1288-1290.
"Nanometer scale patterning of silicon (100) surfaces by an atomic force microscope operating in air", L. Tsau et al., Appl. Phys. Lett. 64(16), Apr. 18, 1994, pp. 2133-2135.
"Fabrication of Si nanostructures with an atomic force microscope", E.S. Snow et al., Appl. Phys. Lett. 64(15), Apr. 11, 1994, pp. 1932-1934.
"Lithographic patterning of self-assembled films", J.M. Calvert, J. Vac. Sci. Technol. B 11(6), Nov. /Dec. 1993, pp. 2155-2163.
"Self-assembled monolayer electron beam resist on GaAs", R.C. Tiberio et al., Appl. Phys. Lett. 62(5), Feb. 1, 1993, pp. 476-478.
"Low voltage electron beam lithography in self-assembled ultrathin films with the scanning tunneling microscope", C.R.K. Marrian et al, Appl. Phys. Lett. 64(3), Jan. 17, 1994, pp. 390-392.
"Scanning Probe Lithography. 1. Scanning Tunneling Microscope Induced Lithography of Self-Assembled n-Alkanethiol Monolayer Resists", C.B. Ross et al., American Chemical Society, Langmuir, vol. 9, No. 3, 1993, pp. 632-636.
"Modification of Silicon Surface Produced by Electric Field Enhanced Oxidation Through Native Oxide", Y. Ejiri et al., Extended Abstracts of 1993 Int'l. Conf. on Solid State Devices and Materials, 1993, pp. 606-608.
"Fabrication of silicon nanostructures with a scanning tunneling microscope", E.S. Snow et al., Appl. Phys. Lett. 63(6), Aug. 9, 1993, pp. 749-751.
"Nanometre-scale chemical modification using a scanning tunnelling microscope", Y. Utsugi, Nippon Telegraph and Telephone Corp., LSI Laboratories, 2 pages, 1991.
"Atomic Force Microscopy Using A Piezoresistive Cantilever", M. Tortonese et al., IEEE, Mar. 1991, pp. 448-450.
"Fabrication of Si nanostructures with an atomic force microscope", E.S. Snow et al., Appl. Phys. Lett. 64(15), Apr. 11, 1994, 12 pgs.
Technology of proximal probe lithography, "Principles and Techniques of STM Lithography", M.A. McCord et al, 1993, The Society of Photo-Optical Instrumentation Engineers, pp. 16-32.
Technology of proximal probe lithography, "Low Voltage E-Beam Lithography With The STM", C.R.K. Marrian et al, 1993, The Society of Photo-Optical Instrumental Engineers, pp. 58-73.
Technology of proximal probe lithography, "The Technology of Proximal Probe Lithography: An Overview", J. A. Dagata et al, 1993, The Society of Photo-Optical Instrumentation Engineers, pp. 3-11.
"Nanometer Lithography on Silicon and Hydrogenated Amouphous Silicon with Low Energy Electrons", Kramer et al., abstract, International Conference on Micro and Nanofabrication, Sep. 1994.
N. Kramer et al., "Fabrication of Metallic Nanowires with a Scanning Tunneling Microscope", 1995 American Institute of Physics, Appl. Phys. Lett. 66 (11), Mar. 13, 1995, pp. 1325-1327.
"Silicon tran

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of fabricating transistor or other electronic device usin does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of fabricating transistor or other electronic device usin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating transistor or other electronic device usin will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-857759

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.