Method of fabricating electronic interconnect devices using...

Semiconductor device manufacturing: process – Having organic semiconductive component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S024000, C257S368000

Reexamination Certificate

active

06762073

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of fabricating an electronic interconnect device using direct imaging of dielectric composite material by the inclusion of a conducting material in the composite material that becomes non-conducting through exposure to electromagnetic radiation.
BACKGROUND OF THE INVENTION
Since the 1970s, carbon nanotubes (or nanofibers) have been identified as materials of interest for a variety of applications. Nanotubes have been contemplated for use in such products as compact fuel cells, fluorescent lights, and sensors.
Carbon nanotubes are two-dimensional sheets of graphite that are rolled and joined into tubular structures. In graphite, the orbits of its outer electrons form three lobes that flare outward at 120-degree angles. Graphene, a singe atomic layer of graphite, consists of a two-dimensional honeycomb structure of bonded carbon atoms. Each lobe bonds with a lobe of a neighboring carbon atom, forming a honeycomb pattern, forming bonds between the carbon atoms that are stronger than those of diamond. Graphite becomes extremely stiff, when the opposite edges of a rectangular sheet are connected to form a cylinder (nanotube). Carbon nanotubes generally have diameters in the range of from 1 to 100 nanometers and may range in length up to about 100 micrometers, although other diameters and lengths are possible.
Carbon nanotubes can have either a single-wall construction (SWNT) or a multi-wall construction (MWNT). Single-wall carbon nanotubes are more pure conductors than multi-wall carbon nanotubes and generally have a diameter of approximately 1 to 4 nanometers. On the other hand, multi-wall carbon nanotubes generally have a diameter of approximately 2 to 40 nanometers. Multi-wall carbon nanotubes can range from metallic to insulating, and because there may be differences between each tube in a multi-wall construction, single-wall carbon nanotubes are preferred for many applications.
Experiments and theory have shown that single-walled carbon nanotubes can be either metals or semiconductors, and their electrical properties can rival, or even exceed, the best metals or semiconductors known. The remarkable electrical properties of single-walled carbon nanotubes stem from the unusual electronic structure of the graphene. Nanotubes can be either conductors or semiconductors, depending on how the tube is rolled up.
Carbon nanotubes are grown by combining a source of carbon with a catalytic nanostructured material, such as iron or cobalt, at elevated temperatures. Sources of carbon employed to date include bulk graphite, hydrocarbons and carbon monoxide. At elevated temperatures, the catalyst has a high solubility for carbon. The carbon in the particle links up to form graphene and wraps around the catalyst to form a cylinder. Subsequent growth occurs from the continuous addition of carbon to the base of the tube at the nanoparticle/tube interface. Creating the proper conditions from growth can be done in a variety of ways, including bulk synthesis techniques, such as arc synthesis and laser assisted growth. An alternative technique is to grow the nanotubes directly on the substrate, for example, by using chemical vapor deposition.
Nanotubes may be rendered non-conductive through the application of electromagnetic radiation. The radiation may be applied in such a manner as to cause partial or full destruction of the tubular structure, resulting in a loss of bulk conductivity. Researchers have determined that single-walled nanotubes ignite when exposed to a conventional photographic flash, as described by Ajayan et al., “Nanotubes in a Flash—Ignition and Reconstruction”,
Science
, Vol. 296, Apr. 26, 2002, the subject matter of which is herein incorporated by reference in its entirety. This photoeffect occurs for single-walled carbon nanotubes prepared by carbon arc, laser ablation, or chemical vapor deposition techniques upon expose to a camera flash at close range. Ignition and burning occur when local increases in temperature are sufficient to initiate the oxidation of the carbon and propagate as more heat is released by the exothermic reaction. Heat confinement in nanostructures can thus lead to drastic structural reformation and, under oxidizing environments, induce ignition under conditions not expected for bulk materials. The heat pulse is created by light absorption by the nanotubes from a proximal light flash.
Carbon nanotubes can be good conductors of electricity. They are currently used in lithium batteries, because their ability to conduct electricity facilitates recharging. Carbon nanotubes have also been suggested for use in electrochemical capacitors. U.S. Pat. No. 6,031,711 to Tennent et al., the subject matter of which is herein incorporated by reference in its entirety, discloses the use of graphitic nanofibers, including tubular fullerenes, nanotubes, and fibrils, which have been functionalized by chemical substitution, as electrodes in electrochemical capacitors.
Single-wall carbon nanotubes have also been suggested for use in molecular logic and memory devices. U.S. Pat. No. 6,423,583 to Avouris et al., the subject matter of which is herein incorporated by reference in its entirety, discloses a method of permanently modifying a single-wall carbon nanotube or a multi-wall carbon nanotube by using current induced electrical breakdown to eliminate individual nanotubes having a particular characteristic. The method is used to tailor properties of a composite nanotube by changing the proportion of component nanotubes. Similarly, published U.S. patent application Ser. No. 2002/0173083 A1 to Avouris et al., the subject matter of which is herein incorporated by reference in its entirety, discloses a method of electrically-induced breakdown of a plurality of stray nanotubes.
U.S. Pat. No. 6,472,705 to Bethune et al., the subject matter of which is herein incorporated by reference in its entirety, discloses the use of single-wall carbon nanotubes in microelectronic devices, such as Field effect transistors, wherein the insulating layer contains at least one closed cage molecule, such as fullerenes. Carbon nanotubes are defined as elongated fullerenes.
U.S. Pat. No. 6,420,092 to Yang et al., the subject matter of which is herein incorporated by reference in its entirety, discloses a fabrication method for a dielectric material with a low dielectric constant using a low dielectric constant nanotube. The inventors found that using a nanotube for a dielectric layer results in low dielectric constant because of the existence of pores throughout the structure of the nanotube. The nanotube was also found to have good thermal stability because it does not easily absorb moisture due to the low polarity of the nanotube wall. The inventors of the U.S. Pat. No. 6,420,092 patent determined that the formation of the dielectric layer with a nanotube stabilizes the quality of the dielectric layer.
Traditional electronic interconnection fabrication techniques for printed wiring boards require multiple processing steps. In addition, the density of electronic interconnections is practically limited by the ability of the composite material to dissipate heat. The inventor of the present invention has determined that the addition of single-walled carbon nanotubes to conventional composite substrate materials produces an improved composite material that enables the formation of circuits on the composite substrate material through a one-step exposure to electromagnetic radiation.
The use of the substrate material of the instant invention has an advantage over traditional electronic interconnection fabrication methods, because the process for forming circuits is a one-step exposure to electromagnetic radiation rather than the multi-step process used in conventional manufacturing. Another advantage to the use of the novel material of the invention is the density of electronic interconnections that can be achieved. Limits on conventional circuitry are imposed by material processing limits greater than the resolution of radiation sources. In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of fabricating electronic interconnect devices using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of fabricating electronic interconnect devices using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating electronic interconnect devices using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3234689

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.