Method of fabricating devices using an attenuated...

Radiation imagery chemistry: process – composition – or product th – Radiation modifying product or process of making – Radiation mask

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06251546

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to optical lithography and, more particularly, a method for patterning subwavelength circuit features in a resist coated semiconductor wafer using phase-shifting mask techniques.
2. Description of the Related Art
As consumers demand more compact and more powerful electronic devices, manufacturers must fabricate ever smaller and denser integrated circuits. Heretofore, manufacturers have employed photolithographic techniques, i.e. techniques that utilize light (e.g. ultraviolet rays or monochromatic light), to pattern miniature circuit features such as, for example, gate electrodes, contacts, vias, metal interconnects, etc. in a substrate.
Photolithography involves the projection of a patterned image onto a coating or layer of photoresist (i.e., a radiation sensitive material) on a semiconductor wafer using an imaging tool and a photomask having a desired pattern thereon. After exposure, the resist-coated wafer is soaked in a developing solution so as to reproduce the imaged pattern. Depending on the particular type of photoresist (e.g., a positive or negative photoresist), a positive or a negative image of the pattern of the photomask is developed in the photoresist layer. For example, if a negative-tone resist is used, then the projected radiation passing through the photomask will cause the exposed areas of the photoresist to undergo polymerization and cross-linking. Upon subsequent development, unexposed portions of the photoresist will wash off with the developer, leaving a pattern of resist material constituting a reverse or negative image of the mask pattern. On the other hand, if a positive-tone resist is used, the radiation passing through the mask will cause the exposed portions of the resist layer to become soluble in a developer, thereby leaving a pattern that corresponds directly or positively to the transparent portions of the mask pattern. In either case, the remaining resist material will undergo subsequent processing steps such as, for example, etching and deposition to form the desired semiconductor devices.
To produce subwavelength circuit features, e.g., features smaller than the wavelength of the exposure radiation, manufacturers employ a photolithographic technique known as the phase-shifting mask technique. The phase-shifting mask technique uses a mask having a region that allows transmission of light therethrough and an adjacent region that shifts the phase of the light or radiation travelling therethrough by about 180 degrees relative to that of the incident light. In theory, this 180 degree phase difference causes destructive interference of light from the two regions along their interface to thereby enhance contrast of the projected image.
There are many variations to the phase-shifting mask technique, one common variation uses an attenuated phase-shifting mask (APSM). The APSM is typically made of a quartz substrate having a transmnissive region for transmitting light therethrough and an attenuating, phase-shifting region (i.e., an absorber) that absorbs or attenuates a portion of the incident light while phase-shifting and transmitting a remaining portion of the light therethrough. The absorber is typically formed of a transmittance controlling layer and a phase-shifting layer; optionally, the absorber may be formed of a single layer that performs both of these functions. The absorber may be made of molybdenum silicide oxynitride (MoSiON), chromium oxynitride (CrON), or chromium fluoride (CrF) with such thickness that allows about 5-15% light transmittance. In use, a mask or reticle (having a magnification such as, for example, 4×) is placed in a “stepper” that automatically and incrementally moves and exposes different portions of the wafer to form patterned images on the wafer. The patterned images in the photoresist are then developed into patterns by immersing the photoresist in a developing solution.
A major drawback of prior art APSM techniques is the destructive interference between the phase-shifted light and the non-phase-shifted light along the edge of the patterned image (in the image plane). This results in an intensity profile (i.e. intensity as a function of position in the image plane) that has “side lobes” (i.e., secondary lobe peak intensities) along the edge of the patterned image. In other words, the phase-shifted and the non-phase-shifted light interact along the edge of the patterned image such that there are regions of light with intensities that are significantly different from the background. An image with an intensity profile having sufficiently large side lobes could be developed into a pattern that has “ring” structures around the pattern features. The presence of such ring structures can degrade the intended shapes of the features and would thus prevent the printing of denser circuitry.
There is thus a need for an improved APSM process that significantly reduces or eliminates side lobes in the intensity profile along the edge of a patterned image.
SUMMARY OF THE INVENTION
An object of the invention is to provide an improved photolithographic method of forming an enhanced image of a subwavelength circuit feature on a radiation or light sensitive layer of a semiconductor wafer.
Another object of the invention is to provide an improved attenuated phase-shifting mask for printing subwavelength features.
According to one aspect of the invention, the improved attenuated phase-shifting mask has a transmissive region dimensioned such that the light transmitted therethrough is substantially destructively interfered by phase-shifted light traveling through an attenuating, phase-shifting region adjacent thereto. So constructed, the transmissive region projects an image that has an intensity that is less than the intensity of the background image projected by the attenuating, phase-shifting region. The transmissive region has a dimension d that is selected so that the image of the transmissive region that is projected into the image plane is a dark-field image. The dark field image results from the destructive interference of the light projected onto the transmissive region. The intensity of the image of the transmissive region in the image plane is less than the intensity of the radiation transmitted through the attentuated phase-shifting region contiguous to the transmissive region. Consequently, the intensity of the image of the transmissive region is less than the intensity of the background image.
According to another aspect of the invention, the improved method includes the step of transmitting light through the inventive attenuated phase-shifting mask to project the dark-field image on a negative-tone photoresist so as to form a subwavelength circuit feature in the photoresist. A subwavelength feature is a feature with a dimension that is less than the wavelength of the exposure radiation.
An advantage of the present invention is that subwavelength circuit features can be defined with greater precision because the intensity profile of the image projected by the attenuated phase-shifting mask is substantially free of edge-blurring side lobes thereby enabling manufacturers to produce denser circuitry than is possible with prior art techniques.
A preferred embodiment of an improved photolithographic method of forming a patterned feature on a semiconductor wafer includes the use of an imaging tool to emit and focus light of a wavelength &lgr;. A semiconductor wafer having a photoresist layer that is responsive to the light from the imaging tool is positioned along a propagation path of the light from the imaging tool, so that at least a portion of the light is incident on the photoresist layer. The method also includes positioning along the propagation path of the light from the imaging tool an attenuated phase-shifting mask for projecting an image onto the photoresist layer. Preferably, the mask has a transmissive region for substantially transmitting the light therethrough to form a projected image substantially shaped as the patterned feat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of fabricating devices using an attenuated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of fabricating devices using an attenuated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating devices using an attenuated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.