Method of fabricating deep-shallow trench isolation

Semiconductor device manufacturing: process – Formation of electrically isolated lateral semiconductive... – Grooved and refilled with deposited dielectric material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S426000, C438S427000, C438S430000, C438S431000, C438S432000, C438S445000

Reexamination Certificate

active

06214696

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a semiconductor manufacturing process, and more specifically to a process to fabricate a trench isolation.
BACKGROUND OF THE INVENTION
In integrated circuits, a great number of devices and circuits are fabricated on a single chip. Various kinds of devices like transistors, resistors, and capacitors are formed together. Each device must operate independently without interfering each other, especially under the higher and higher packing density of the integrated circuits. An isolation region is formed on the semiconductor substrate for separating different devices or different functional regions. The isolation region is generally a non-active and insulated region for isolating between devices, wells, and functional regions.
LOCOS (local oxidation of silicon) is a widely applied technology used in forming the isolation region. The isolation regions are created by oxidizing the portion of the silicon substrate between each active device and functional regions. The LOCOS technology provides the isolation region with a simple manufacturing process and low cost, especially when compared with other trench isolation processes. However, with the fabrication of semiconductor integrated circuits becoming densely packed, the application of the LOCOS technology is quite limited. For a highly packed circuits like the circuits with devices of deep submicrometer feature sizes, the LOCOS process has several challenges in fulfilling the isolating and packing density specifications.
The trench isolation process, or the shallow trench isolation (STI) process, is another isolation process proposed especially for semiconductor chips having high packing density. A trench region is formed in the semiconductor with a depth deep enough for isolating the devices or different wells. In general, a trench is etched and refilled with insulating materials by the trench isolation formation process. The refilled trench regions are employed for the application in the VLSI and ULSI level. In addition, capacitors can also be formed within the trench by filling both insulating and conductive materials sequentially for the application of forming memory cells.
Shallow trench isolation has emerged as the solution for deep sub-micron transistor isolation due to its scalability, planar topography and potentially low thermal budget. In U.S. Pat. No. 5,443,794 to Fazan et al., a method for using spacers to form isolation trenches with improved corners is proposed. They mentioned that the limits of the standard LOCOS process have motivated the search for and the development of new isolation schemes. Trench isolation is a promising candidate as it uses a fully recessed oxide, has no bird's beak, is fully planar, and does not suffer from the field oxide thinning effect. A smooth trench profile with a self-aligned cap or dome is created in their invention.
For providing better insulating characteristics, a deep trench isolation scheme has been reported. The deep trench isolation increases the packing density and improve the latch-up immunity in CMOS (complementary metal oxide semiconductor)/bipolar devices. R. Bashir and F. Hebert disclosed a planarized trench isolation and field oxide formation using poly-silicon (PLATOP) in their work: “PLATOP: A Novel Planarized Trench Isolation and Field Oxide Formation Using Poly-Silicon” (IEEE Electron Device Letters, vol. 17, no. 7, 1996). It is disclosed that a process highly applicable to high density and high performance CMOS/bipolar processes is needed. The process should not suffer from the conventional limitations of LOCOS-based isolation. The deep trench isolation is finding abundant use in semiconductor processes to increase packing density and latch-up immunity. The difficulties reported include lateral encroachment by bird's beak, formation of thick oxide, combination of deep trench and field isolation, and area and loading effects of planarization process.
In U.S. Pat. No. 5,474,953 to Shimizu et al., a method is reported for forming an isolation region comprising a trench isolation region and a selective oxidation film involved in a semiconductor device. A semiconductor device including both emitter coupled logic circuits (ECL circuits) involving super high speed performance bipolar transistors and super high integrated CMOS circuits with a low power consumption has been developed and known in the art. Both the CMOS and the bipolar devices are formed on a single chip. Thus, isolation structures fulfilling the needs of the various devices and circuits is highly demanded for providing designed functionality of the circuits.
SUMMARY OF THE INVENTION
The method includes forming a pad oxide on a substrate. A polysilicon layer is then formed over the pad layer. Next, an oxide layer is formed over the polysilicon layer. An opening is formed in the oxide and the polysilicon layers, and the pad layer. A portion of the substrate is then etched by using the oxide layer as a mask. A sidewall structure is then formed on the opening. Next, a portion of the substrate is also etched for forming a deeper trench by using the sidewall structure as a mask. The sidewall structure and the oxide layer are then removed. Then, an oxide and an oxynitride layer are formed on aforesaid feature. A semiconductor layer is then formed over the oxynitride layer. A portion of the semiconductor layer is oxidized for forming an insulating layer. Finally, a refilling layer is formed over the insulating layer and the substrate is planarized for having a planar surface. After that, the residual polysilicon layer is patterned to form a trasistor on the substrate. A conductive layer can be formed on the polished polysilicon before forming the transistor.


REFERENCES:
patent: 5130268 (1992-07-01), Liou et al.
patent: 5374584 (1994-12-01), Lee et al.
patent: 5447883 (1995-09-01), Koyama
patent: 5457339 (1995-10-01), Komori et al.
patent: 5470783 (1995-11-01), Chiu et al.
patent: 5538916 (1996-07-01), Kuroi et al.
patent: 5763315 (1998-06-01), Benedict et al.
patent: 5795811 (1998-08-01), Kim et al.
patent: 5981357 (1999-11-01), Hause et al.
patent: 6001706 (1999-12-01), Tan et al.
patent: 6040597 (2000-03-01), Kim et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of fabricating deep-shallow trench isolation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of fabricating deep-shallow trench isolation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating deep-shallow trench isolation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.