Etching a substrate: processes – Nongaseous phase etching of substrate – With measuring – testing – or inspecting
Reexamination Certificate
2000-10-04
2002-10-22
Gulakowski, Randy (Department: 1746)
Etching a substrate: processes
Nongaseous phase etching of substrate
With measuring, testing, or inspecting
C216S103000, C374S003000, C374S005000, C374S007000, C374S101000, C374S014000
Reexamination Certificate
active
06468438
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of fabricating a substrate, and more particularly, to a method of fabricating a substrate for a liquid crystal display. Although the present invention is discussed in detail with respect to a substrate for a liquid crystal display, the present invention is applicable to a wide variety of devices including substrates similar to those used in a display.
2. Discussion of the Related Art
Generally, in a liquid crystal display, upper and lower substrates are joined. A substrate having a pixel electrode and switching device in a matrix, and a substrate having a color filter arranged to realize colors and a common electrode are attached to each other. Liquid crystal is injected between the two substrates, which are in turn sealed. When an electric field is applied externally, the liquid crystal moves according to the electric field so that an image is displayed by light passing through the substrates.
As shown in
FIG. 1
, a conventional liquid crystal display includes liquid crystal
5
having light transmissivity that varies with electric field, a first transparent substrate
3
(lower substrate) on which electric wire is formed to apply an electric field to a selected portion, and a second transparent substrate
4
(color filter substrate). The liquid crystal
5
is injected between substrates
3
and
4
. Then, they are sealed by a sealant
6
. Polarizing plates
2
-
1
and
2
-
2
are attached to substrates
3
and
4
. A back light
1
for producing light is fastened the bottom of the lower substrate.
In the first transparent substrate, a scanning line, a data line, a pixel electrode, and switching means for controlling an electric field to the pixel electrode are arranged in a matrix. To the second transparent substrate, the common electrode and color filter are attached. Leads and pads for receiving external signals are formed on the substrates.
A method of fabricating such a liquid crystal display will be discussed below.
On a transparent substrate, such as glass, several hundred thousand to several million unit pixel electrodes are disposed along with control devices for controlling data to be applied to those pixel electrodes, and data lines and scanning lines for externally applying a video signal are formed. This constitutes first transparent substrate
3
.
On another transparent substrate, a color filter and a common electrode for forming colors by passing light controlled only by the pixel electrodes are disposed to form second transparent substrate
4
. After the lower and upper substrates are assembled, a sealant is spread thereon to seal them. The two substrates are arranged to be joined. The liquid crystal is injected therebetween, and finally the liquid crystal injection hole is closed so that the liquid crystal is not discharged externally.
After the liquid crystal sealing process, polarizing plates
2
-
1
and
2
-
2
are attached to the substrates. In order to externally apply a signal, a drive IC is connected to the leads. A back light, that is, light emitting means, and attaching means are assembled under the lower substrate to complete the liquid crystal display.
In fabricating the upper and lower substrates according to the conventional method, rinsing/deposition or etching equipment is used through several tens of processes. Here, physical forces may be applied to the transparent substrates during the processes. Further, the substrates undergo heating and cooling processes which can damage the substrates, if fragile.
In the conventional technique, transparent glass is used for the substrates in manufacturing the liquid crystal display. Commercially available glass assembly (upper and lower substrates combined) is usually 1.4 mm-thick, for example. To reduce the weight of the liquid crystal display, a single substrate of 0.7 mm, for example, has been used. In the conventional technique described above, if the thickness of the substrate is determined at the initial stage, the same thickness is maintained to the final product.
Since conventionally used glass is comparatively thick, it is protected against physical or thermal impacts during procedure. However, if a thin substrate is used from the initial stage, the yield will decrease due to damage or deformation. For manufacturing the lower substrate and liquid crystal filling processes, the process of heating or cooling between 200-300° C. occurs more than ten times. In addition, a high-speed rotation process due to a rinsing or coating process is repeated. For this reason, the thickness of glass cannot become thinner. There are limitations in reducing the weight of a liquid crystal display. In order to solve these problems, the equipment must be improved or additional functions must be provided, which however would increase the cost of the final product.
SUMMARY OF THE INVENTION
The present invention has been made in view of the above circumstances and has as an object to overcome the problems and disadvantages of the prior art.
Another object of the present invention is to provide a method of fabricating a substrate that is light and thin.
Additional objects and advantages of the invention will be set forth in part in the description which follows and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
To achieve the objects and in accordance with the purpose of the invention, as embodied and broadly described herein, a method of fabricating a substrate includes the steps of providing a first substrate having a first thickness; providing a second substrate having a second thickness; providing an inner layer between the first and second substrates; assembling the first substrate, the second substrate, and the inner layer using an adhesive; and reducing the thickness of at least one of the first and second substrates.
In another aspect of the present invention, a method of fabricating a substrate for a liquid crystal display includes steps of providing a first transparent substrate having a first thickness; providing a second transparent substrate having a second thickness; assembling-the first and second transparent substrates to provide a space between the first and second transparent substrates; reducing at least one of the first and second thickness; injecting a liquid crystal into the space between the first and second transparent substrates; and sealing the space between the first and second transparent substrates.
In another aspect of the present invention, a method of fabricating a liquid crystal display includes the steps of providing a first transparent substrate having a first thickness; providing a second transparent substrate having a second thickness; assembling the first and second transparent substrates to provide a space between the first and second transparent substrates; reducing at least one of the first and second thicknesses; injecting a liquid crystal into the space between the first and second transparent substrates; and sealing the space between the first and second transparent substrates.
In another aspect of the present invention, a method of fabricating a substrate includes the steps of submerging at least part of said substrate into a chemical bath to change a thickness of said substrate and detecting a temperature of said chemical bath to ascertain an amount of change in said thickness of said substrate.
In another aspect of the present invention, a method of fabricating a substrate assembly for a liquid crystal display device includes the steps of assembling a first substrate and a second substrate to form a substrate assembly having a thickness; substantially submerging said substrate assembly into a chemical bath to change said thickness of said substrate assembly; detecting a temperature of said chemical bath to ascertain an amount of change in said thickness of said s
Jeong Jae Gyu
Shin Woo Sup
Ahmed Shamim
Gulakowski Randy
LG Philips LCD Co., Ltd
McKenna Long & Aldridge LLP
LandOfFree
Method of fabricating a substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of fabricating a substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating a substrate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2992552