Method of etching, as well as frame element, mask and...

Electrolysis: processes – compositions used therein – and methods – Electrolytic erosion of a workpiece for shape or surface... – Using mask

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S279000, C204S22400M, C204S288200, C430S318000

Reexamination Certificate

active

06656341

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to electrochemical etching of a substrate having a surface layer of conductive material.
BACKGROUND OF THE INVENTION
Electrochemical etching is an established technique for pattern generation on substrates, e.g. in production of so-called PCB (Printed Circuit Board) or PWB (Printed Wire Board) as well as semiconductor wafers. In both cases, the substrate comprises a metal film adhered to a non-conductive base. Generally, a photosensitive resist coating is applied to the metal film, whereupon a lithographic process is used to transfer a desired pattern is from a mask or master to the resist coating, thereby uncovering selected parts thereof. The electrochemical etching step is effected by imposing an electrical current in a conductive etchant between the substrate and an opposite counter electrode, the substrate and the counter electrode being connected to a common power supply as anode and cathode, respectively. During this etching step, the uncovered parts of the metal film are dissolved and the pattern is transferred to the metal film. This type of electrochemical etching is for example known from EP-A1-0 392 738, EP-A2-0 563 744, and WO98/10121.
One major challenge in electrochemical etching is to achieve a uniform etching process over the surface of the substrate, while maintaining a high production yield. This is especially difficult to achieve when etching large substrates. Typical dimensions of substrates or panels used for production of PCB/PWB are 610×457 mm, although other dimensions are also commonly used. The combination of such a large area to be etched and thin metal films, typically 1-35 &mgr;m thick, makes the resistance distribution over the substrate of importance for the resulting etching process. Normally, the electrical current is supplied to the substrate at one or more contact areas at the periphery of the substrate. As a consequence, the resistance will increase towards the center of the substrate. The correspondingly decreasing current density towards the center will lead to a faster etching process at the periphery than at the center part of the substrate. This results in a non-uniformity of the etched pattern. In principle the same problem applies to thicker metal films. As the metal film becomes thinner during the process, the resistance from edge to center of the substrate will increase and lead to the above-described non-uniformity.
The achievement of a high degree of uniformity in the etched pattern also calls for careful optimization of the geometry and dimension of the counter electrode, the alignment of the counter electrode with the substrate, and the distance between the counter electrode and the substrate. Further, a uniform current distribution around the periphery of the substrate should be ascertained, necessitating many and/or large contact areas. Such optimization is difficult to combine with mass production at high throughput.
The uniformity of the etched pattern is also affected by the pattern layout, i.e. if the degree of exposed metal differs over the surface of the substrate, since areas with a high degree of exposed metal will exhibit a slower etching process than areas with a small degree of exposed metal.
The above problems are also evident in the production of semiconductors. Although the substrate in general has a smaller surface area, the number of individual circuits is very large and the metal film is very thin, typically 300 nm-3 &mgr;m. Therefore, the resistance distribution from edge to center of the substrate can influence the uniformity of the electrochemical etching process.
SUMMARY OF THE INVENTION
The object of the invention is to solve or alleviate some or all of the problems described above. More specifically, the invention should allow for production of etched items at an industrial scale with high quality, also based on substrates that have large surface areas and/or are provided with thin metal films.
This object is achieved, at least partially, by the method, frame element, mask and prefabricated substrate element as set forth in the appended claims.
By providing the frame adjacent to the central surface area portion to be etched, in accordance with the invention, it is possible to reduce or eliminate edge effects, i.e. prevent high current densities from forming at the periphery of central surface area portion, by the frame attracting any excess electrical field formed thereat. Such excess electrical field can be formed when the cathode is larger than the surface area portion to be etched or when the cathode is misaligned therewith. Thus, the frame provides for the use of one and the same counter electrode with different pattern layouts and substrate dimensions.
When properly designed, the frame is also capable of protecting the underlying surface layer such that an electrical current led into the surface layer during the etching step is evenly distributed around the periphery of the substrate. Thus, such a frame is capable of forming a shielded “distribution zone” in the underlying surface layer, in which the electrical current is allowed to distribute evenly around the central surface area portion that is to be etched electrochemically. Hence, by providing the frame at the periphery of the substrate, a uniform current distribution over the circumference of the central surface area portion can be ascertained. Consequently, a more uniform etching process than heretofore can be effected. The provision of the frame also allows for simplified contacting of the substrate, i.e. the use of fewer and/or smaller contact areas than in prior art methods, which is of importance for mass production.
According to a first aspect of the invention, the frame is included in a separate, electrically conductive frame element that is placed over the substrate during the etching step. Thus, the frame element has a conductive surface facing away from the substrate, i.e. towards the cathode. Such a frame element will prevent high current densities from forming at the periphery of central surface area portion, by the conductive surface of the frame element attracting electrical field. The frame element will also form a shielded “distribution zone” in the underlying surface layer.
According to a second aspect of the invention, the frame is formed in the resist coating. Compared to the first aspect of the invention, the inventive method is simplified, in that the step of applying a separate frame is eliminated, while retaining the above-identified benefits of the frame. Further, compared to the first aspect, the amount of electrical power required for the etching can be reduced since the area of bare metal generally is smaller.
According to the second aspect of the invention the frame comprises part of the resist coating as well as the underlying metal layer.
According to the second aspect, the frame can be provided in the resist coating simultaneously with the circuit pattern. In the case of photolithography, the resist coating can be exposed through a mask containing a frame pattern, as well as the circuit pattern to be etched in the central surface area portion. Alternatively, the circuit pattern can be included in a separate mask. It is also conceivable to provide, for patterning and subsequent etching, prefabricated substrates with a resist coating incorporating the frame pattern. In another conceivable alternative, a laminate structure including a resist coating defining at least the frame is attached to the substrate before the etching step.
According to a preferred embodiment of the second aspect, the frame includes a field distribution portion, which is arranged adjacent to the central surface area portion and which has a field distribution pattern uncovering the underlying surface layer to a given degree of exposure, so as to prevent excessive current densities from forming at the periphery of the central surface area portion during electrochemical etching thereof. More specifically, the field distribution portion minimizes the formation of high current densitie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of etching, as well as frame element, mask and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of etching, as well as frame element, mask and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of etching, as well as frame element, mask and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3154427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.