Method of enhancing the survival of retinal neurons and...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S056000, C514S912000, C514S913000, C514S914000, C435S069100, C435S069400, C435S810000, C530S350000, C530S399000, C206S569000

Reexamination Certificate

active

06331523

ABSTRACT:

BACKGROUND
The present invention relates to a method of promoting retinal neuron survival as well as preventing photoneuron degredation.
The retina is the light-sensitive portion of the eye. The retina contains the cones and rods (photoreceptors), the photosensitive cells. The rods contain rhodopsin, the rod photopigment, and the cones contain 3 distinct photopigments, which respond to light and transmit signals through successive neurons to ultimately trigger a neural discharge in the output cells of the retina, the ganglion cells. The signal is carried by the optic nerve to the visual cortex where it is registered as a visual stimulus.
In the center of the retina is the macula lutea, which is about ⅓ to ½ cm in diarneter. The macula provides detailed vision, particularly in the center (the fovea), because the cones are higher in density. Blood vessels, ganglion cells, inner nuclear layer and cells, and the plexiform layers are all displaced to one side (rather than resting above the ones), thereby allowing light a more direct path to the cones.
Under the retina is the choroid, a collection of blood vessels embedded within a fibrous tissue, and the pigmented epithelium (PE), which overlays the choroid layer. The choroidal blood vessels provide nutrition to the retina (particularly its visual cells). The choroid and PE are found at the posterior of the eye.
The retinal pigment epithelial (RPE) cells, which make up the PE, produce, store and transport a variety of factors that are responsible for the normal function and survival of photoreceptors. RPE are multifunctional cells that transport metabolites to the photoreceptors from their blood supply, the chorio capillaris of the eye. The RPE cells also function to recycle vitamin A as it moves between the photoreceptors and the RPE during light and dark adaptation. RPE cells also function as macrophages, phagocytizing the rhythmically-shed tips of the outer segments of rods and cones, which are produced in the normal course of cell physiology. Various ions, proteins and water move between the RPE cells and the interphotoreceptor space, and these molecules ultimately effect the metabolism and viability of the photoreceptors.
The Müller cell is the most prominent glial cell within the retina, and could also be important for maintaining the viability of visual cells. Müller cells traverse the entire retina in a radial direction from the ganglion cells to the external limiting membrane, a photoreceptor-photoreceptor and Müller cell-photoreceptor contact point. In addition to providing structural support, Müller cells regulate the control of ionic concentrations, degradation of neurotransmitter, removal of certain metabolites and may be a source of important factors that promote the normal differentiation of photoreceptor cells. Kljavin and Reh (1991),
J. Neuroscience
11: 2985-2994. Although a search for defects in Müller cells has not specifically been examined, any disease or injury affecting their normal function most likely would have a dramatic influence on the health of rods and cones. Finally, the death of rod photoreceptors may influence the viability of cones. One common feature in degenerations involving mutations in rod specific genes (i.e., rhodopsin) is that cones also eventually die. The reason for the loss of cones has not been determined, although it has been suggested that dying rods may release endotoxins. Bird (1992),
Opthal. Pediatric. Genet
. 13: 57-66.
Diseases or injury to the retina can lead to blindness if retinal cells are injured or killed. The photoreceptor cells are particularly susceptible to injury since they are often the first cells to degenerate or suffer damage as a result of a traumatizing event or condition. Hereditary defects in specific photoreceptor genes, retinal detachment, circulatory disorders, overexposure to light, toxic effects to drugs and nutritional deficiencies are among the wide array of causes that can result in the death of photoreceptor cells. Developmental and hereditary diseases of the retina account for around 20 percent of all legal blindness in the United States.
Report of the Retinal and Choroidal Panel: Vision Research—A National Plan
1983-1987, vol. 2, part I, summary page 2. For example, retinitis pigmentosa (RP), a genetic based progressive disease is characterized by incremental loss of peripheral vision and night blindness, which is due in large part to the loss of photoreceptor cells. RP is a group of hereditary diseases and presently afflicts about one in 3000 persons worldwide. Wong, F. (1995)
Arch. Ophthalmol
. 113: 1245-47. Total blindness is the usual outcome in more progressive stages of this disease. Macular degeneration, another major cause of blindness, is a complex group of disorders that affects the central or predominantly cone portion of the retina. Cones are primarily responsible for acute vision. Diabetic retinopathy, a frequent complication in individuals with diabetes mellitus, is estimated to be the fifth leading cause of new blindness. However, it is the second leading cause of blindness among individuals of 45-74 years of age. Moreover, these problems are only expected to get worse as the general population ages.
Photoreceptor degeneration may also occur as a result of overexposure to light, various environmental trauma or by any pathological condition characterized by death or injury of retinal neurons or photoreceptors.
Photoreceptor loss may also be influenced by cellular or extracellular retinal components. The primary example of extracellular stimulus is related to the close association between the pigment epithelium (PE) and the photoreceptor cells. As mentioned previously, the PE transports metabolites to and from the photoreceptors as well as removes discarded cellular material. Retinal detachment, which involves the separation of the neural retina from the PE leads to photoreceptor death. Furthermore, the degree of cell loss is dependent upon the duration of the separation. Gouras et al. (1991)
IOVS
32: 3167-3174.
Additionally, diseases of the PE can lead to photoreceptor cell loss. The primary example of this is the Royal College of Surgeons (RCS) rat, which has an inherited retinal dystrophy due to a defect in the PE, resulting in photoreceptor cell death during the normal course of the animal's life. Mullen & LaVail (1976),
Science
192: 799-801. In this animal, the PE are unable to phagocytize outersegment debris which accumulates between the photoreceptor cells and the PE, and as a result, provide a useful model system to study the role of trophic factors on the retina. A delay of photoreceptor death is obtained through the proximal placement of normal PE cells both in experimental chimeras, Mullen & LaVail, supra and by transplantation of PE from healthy animals. Li & Turner (1988),
Exp. Eye Res
. 47: 911-917; Sheedlo et al. (1992),
Int. Rev. Cytol
. 138: 1-49; Lavail et al. (1992),
Exp. Eye Res
. 55: 555-562; Lavail et al. (1992),
PNAS
89: 11249-11253. In all of these experiments, the “rescue” extended beyond the boundaries of the normal PE cells, and suggests the presence of difussible trophic factor(s) produced by the PE cells.
Another useful animal model is the albino rat. In this animal, normal illumination levels of light, if continuous, can cause complete degeneration of photoreceptors. Results obtained using such rats as a model to identify survival enhancing factors appear to correlate well with data obtained using RCS rats. Moreover, different factors can be compared and complications can be assessed more quickly in the light damage model than can be assessed by testing factors in models which are based on the slowly evolving dystrophy of the RCS rat.
Using albino rats, it has been determined that a number of agents, when administered systemically (intraperitoneally) can be used to ameliorate retinal cell death or injury caused by exposure to light. In general, exposure to light generates oxygen free radicals and lipid peroxidation products. Accordingly, compounds that act as antioxidants

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of enhancing the survival of retinal neurons and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of enhancing the survival of retinal neurons and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of enhancing the survival of retinal neurons and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2565121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.