Method of distributing network resources fairly between...

Multiplex communications – Channel assignment techniques – Adaptive selection of channel assignment technique

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S395200

Reexamination Certificate

active

06470022

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to data communications networks and more particularly relates to a method of distributing network resources fairly among users establishing calls in an ATM network.
BACKGROUND OF THE INVENTION
Asynchronous Transfer Mode
Currently, there is a growing trend to make Asynchronous Transfer Mode (ATM) networking technology the base of future global communications. ATM has already been adopted as a standard for broadband communications by the International Telecommunications Union (ITU) and by the ATM Forum, a networking industry consortium.
ATM originated as a telecommunication concept defined by the Comite Consulatif International Telegraphique et Telephonique (CCITT), now known as the ITU, and the American National Standards Institute (ANSI) for carrying user traffic on any User to Network Interface (UNI) and to facilitate multimedia networking between high speed devices at multi-megabit data rates. ATM is a method for transferring network traffic, including voice, video and data, at high speed. Using this connection oriented switched networking technology centered around a switch, a great number of virtual connections can be supported by multiple applications through the same physical connection. The switching technology enables bandwidth to be dedicated for each application, overcoming the problems that exist in a shared media networking technology, like Ethernet, Token Ring and Fiber Distributed Data Interface (FDDI). ATM allows different types of physical layer technology to share the same higher layer—the ATM layer.
ATM uses very short, fixed length packets called cells. The first five bytes, called the header, of each cell contain the information necessary to deliver the cell to its destination. The cell header also provides the network with the ability to implement congestion control and traffic management mechanisms. The fixed length cells offer smaller and more predictable switching delays as cell switching is less complex than variable length packet switching and can be accomplished in hardware for many cells in parallel. The cell format also allows for multi-protocol transmissions. Since ATM is protocol transparent, the various protocols can be transported at the same time. With ATM, phone, fax, video, data and other information can be transported simultaneously.
ATM is a connection oriented transport service. To access the ATM network, a station requests a virtual circuit between itself and other end stations, using the signaling protocol to the ATM switch. ATM provides the User Network Interface (UNI) which is typically used to interconnect an ATM user with an ATM switch that is managed as part of the same network.
The current standard solution for routing in a private ATM network is described in Private Network Node Interface (PNNI) Phase 0 and Phase 1 specifications published by the ATM Forum. The previous Phase 0 draft specification is referred to as Interim Inter-Switch Signaling Protocol (IISP). The goal of the PNNI specifications is to provide customers of ATM network equipment some level of multi-vendor interoperability.
PNNI Phase 1
As part of the ongoing enhancement to the ATM standard by work within the ATM Forum and other groups, the Private Network to Network Interface (PNNI) protocol Phase 1 has been developed for use between private ATM switches and between groups of private ATM switches. The PNNI specification includes two categories of protocols. The first protocol is defined for the distribution of topology information between switches and clusters of switches where the information is used to compute routing paths within the network. The main feature of the PNNI hierarchy mechanism is its ability to automatically configure itself within the networks in which the address structure reflects the topology. The PNNI topology and routing techniques are based on the well-known link state routing technique.
The second protocol is effective for signaling, i.e., the message flows used to establish point-to-point and point-to-multipoint connections across the ATM network. This protocol is based on the ATM Forum User to Network Interface (UNI) signaling with mechanisms added to support source routing, crankback and alternate routing of source SETUP requests in the case of bad connections.
With reference to the PNNI Phase 1 specifications, the PNNI hierarchy begins at the lowest level where the lowest level nodes are organized into peer groups. A logical node in the context of the lowest hierarchy level is the lowest level node. A logical node is typically denoted as simply a node. A peer group is a collection of logical nodes wherein each node within the group exchanges information with the other members of the group such that all members maintain an identical view of the group. When a logical link becomes operational, the nodes attached to it initiate and exchange information via a well known Virtual Channel Connection (VCC) used as a PNNI Routing Control Channel (RCC).
Hello messages are sent periodically by each node on this link. In this fashion the Hello protocol makes the two neighboring nodes known to each other. Each node exchanges Hello packets with its immediate neighbors to determine the local state information of its neighbor. The state information comprises the identity and peer group membership of the immediate neighbors of the node including a status of all its links to its neighbors. Each node then bundles its state information in one or more PNNI Topology State Elements (PTSEs) which are subsequently flooded throughout the peer group.
PTSEs are the smallest collection of PNNI routing information that is flooded as a unit among all logical nodes within a peer group. A node topology database consists of a collection of all PTSEs received, which represents the present view of the PNNI routing topology of a particular node. In particular, the topology database provides all the information required to compute a route from the given source node to any destination address reachable in or through that routing domain.
When neighboring nodes at either end of a logical link begin initializing through the exchange of Hellos, they may conclude that they are in the same peer group. If it is concluded that they are in the same peer group, they proceed to synchronize their topology databases. Database synchronization includes the exchange of information between neighboring nodes resulting in the two nodes having identical topology databases. A topology database includes detailed topology information about the peer group in which the logical node resides in addition to more abstract topology information representing the remainder of the PNNI routing domain.
During a topology database synchronization, the nodes in question first exchange PTSE header information, i.e., they advertise the presence of PTSEs in their respective topology databases. When a node receives PTSE header information that advertises a more recent PTSE version than the one that it has already or advertises a PTSE that it does not yet have, it requests the advertised PTSE and updates its topology database with the subsequently received PTSE. If the newly initialized node connects to a peer group then the ensuing database synchronization reduces to a one way topology database copy. A link is advertised by a PTSE transmission only after the database synchronization between the respective neighboring nodes has successfully completed. In this fashion, the link state parameters are distributed to all topology databases in the peer group.
Flooding is the mechanism used for advertising links whereby PTSEs are reliably propagated node by node throughout a peer group. Flooding ensures that all nodes in a peer group maintain identical topology databases. A short description of the flooding procedure follows. PTSEs are encapsulated within PNNI Topology State Packets (PTSPs) for transmission. When a PTSP is received, its component PTSEs are examined. Each PTSE is acknowledged by encapsulating information from its PTSE header within the acknowle

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of distributing network resources fairly between... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of distributing network resources fairly between..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of distributing network resources fairly between... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2976463

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.