Method of displaying signal obtained by measuring probe and...

Electricity: measuring and testing – Magnetic – With means to create magnetic field to test material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S226000, C324S238000, C382S152000, C382S165000, C073S598000, C073S600000

Reexamination Certificate

active

06777931

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method of displaying a signal obtained by a measuring probe and a device therefor which is preferable to measure variables changing dependent upon a position of an object to be measured, by a measuring probe scanned on the object to be measured, and then display the measured values in a two-dimensional manner, and also the present invention includes a method of displaying surface flaw testing results and a device therefor which displays the magnitude of signals obtained by a surface flaw testing probe. In particular, the present invention relates to a method of displaying surface flaw testing results and a device therefor which is preferable to display the testing results of surface flaws such as cracks formed in or just below a surface of a cylindrical body of a metal such as a rolling roll, and a roller.
BACKGROUND ART
The flaws such as cracks formed in or just below a surface of a cylindrical body of a metal such as a rolling roll, and a roller are usually detected, as shown in
FIG. 1
, by putting a surface flaw testing probe (not shown) on a surface of a rotating cylindrical body
100
, and then scanning the surface flaw testing probe in the axial direction of the cylindrical body to thereby carry out the flaw testing all over the surface of the cylindrical body. On this occasion, the above scanning is refereed to as “the spiral-scanning”, because the locus which the surface flaw testing probe describes on the surface of the cylindrical body is, as shown in
FIG. 1
, shaped like a spiral having a pitch P which is dependent on a rotational speed of the cylindrical body and a feed speed of the probe.
Conventionally, the magnitude of signals obtained by the above-mentioned surface flaw testing probe is, as shown in FIG. 6 of Japanese provisional patent publication (Kokai) No.5-142215, displayed by scanning a surface flaw testing probe spirally on a rolling roll, comparing the amplitude of the signal with a predetermined threshold value while detecting the flaws, and displaying a black line, e.g. on a developed map of a roll when the amplitude of the signal is below the predetermined threshold value, or displaying no black line, e.g. on the developed map of the roll when beyond the predetermined threshold value to thereby discriminate the flaws.
However, the flaw-displaying method in Japanese Provisional Patent Publication (Kokai) No.5-142215 has a problem that so long as the amplitude of the signal does not reach the threshold value even if a small flaw signal is obtained, nothing is displayed. In other words, the threshold value is determined taking account of the amplitude of the flaw signal to be detected, the level of the detected signal obtained at a sound portion of the rolling roll, and the level of extraneous electric noise. Actually, the size and the shape of the surface flaw formed in the surface of the rolling roll are in a thousand different ways, thereby causing the magnitude of the flaw signal to change in great quantities. As a result, even if the flaw is so large as to be harmful, it may provide a small signal dependent on its shape.
On the other hand, setting the threshold value to a small value so as to detect the small flaw signal eliminates the overlook. However, the detected signals obtained at a sound portion of the rolling roll owing to the micro-structure or the surface roughness slightly differ with the rolling rolls, and also the extraneous electric noises vary according to the change of the working state of the electrical external equipment and the grounding state of the equipment which drives the surface flaw testing probe for detecting the flaws, which causes, if the magnitudes of the detected signals are high, the display to be made as if the flaws formed all over the surface of the roll.
Therefore, the threshold value is usually set with a margin with respect to the magnitude of the signal obtained at the sound portion of the rolling roll and the level of the extraneous electric noise (hereinafter generically referred to as ““the noise level””), and also so long as amplitude of the signal does not reach the threshold value even if a small flaw signal which is slightly higher than the noise level is obtained, nothing is displayed.
DISCLOSURE OF THE INVENTION
The present invention has been made in view of the above-mentioned conventional problems. It is therefore an object of the invention to display small flaw signals, etc. when displaying the magnitude of signals obtained by a measuring probe, e.g. a test signal obtained by a surface flaw testing probe.
The present invention provides a method of displaying a signal in a two-dimensional manner, in which signal is obtained by one or more measuring probes relatively scanned on an object to be measured, characterized by comprising the steps of setting an administrative range with respect to the magnitude of the signal, selecting respective display colors used for displaying a signal falling in magnitude beyond the administrative range and a signal falling in magnitude within the administrative range from at least two different color regions which can be visually distinguishable in the color space, and displaying the measured results using the selected respective display colors while changing the color and/or, the depth of color according to the magnitude of the signal, which causes the above-mentioned problems to be resolved.
The color space can be represented by an L*a*b model of CIEL (International Commission on Illumination), an RGB model, or a CMYK model.
In particular, when one of the at least two different color regions which can be visually distinguishable comprises a black-and-white gradation (gray scale), or two of the at least two different color regions which can be visually distinguishable are complementary in color to each other, the magnitude of the signal can be easily discriminated.
Further, when the signal falling in magnitude beyond the administrative range is displayed using the gray scale according to the magnitude of the signal, and the signal falling in magnitude within the administrative range is displayed using colors within the respective color regions except the gray scale while changing the color and/or the depth of color little by little according to the magnitude of the signal, the signal falling in magnitude within the administrative range and the signal falling in magnitude beyond the administrative range can be easily discriminated.
Besides, when the signal falling in magnitude beyond the administrative range is displayed using colors within the respective color regions except the gray scale while changing the color and/or the depth of color little by little according to the magnitude of the signal, and the signal falling in magnitude within the administrative range is displayed using the gray scale according to the magnitude of the signal, the signal of magnitude within the administrative range and the signal of magnitude beyond the administrative range can be easily discriminated.
Further, when both the signal falling in magnitude beyond the administrative range and the signal falling in magnitude within the administrative range are displayed using colors within color regions different from each other without using the gray scale while changing the color and/or the depth of color little by little according to the magnitude of the signal, any magnitude of the signal can be determined by colors.
The administrative range may have an upper limit value and a lower limit value, and it is possible to select three respective display colors used for displaying a signal ranging in magnitude from zero to the lower limit value, a signal ranging in magnitude from the lower limit value to the upper limit value, and a signal falling in magnitude beyond the upper limit value from at least three different color regions which can be visually distinguishable in the color space, and display the measured results using the selected respective display colors while changing the color and/or the depth of color according to the magnitude o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of displaying signal obtained by measuring probe and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of displaying signal obtained by measuring probe and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of displaying signal obtained by measuring probe and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355068

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.