Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Finance
Reexamination Certificate
2000-02-08
2001-04-17
Stamber, Eric W. (Department: 2163)
Data processing: financial, business practice, management, or co
Automated electrical financial or business practice or...
Finance
Reexamination Certificate
active
06219650
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
In consideration of an investment portfolio, such as a pension fund, with oversight by law board members, the invention concerns non-sophisticated methods of determining an optimum allocation of assets to generate a maximum rate of return consonant with recognition of specified risk avoidance criteria. More specifically, the invention provides a method of simulating future trust fund cash flow for a given asset allocation and measuring the frequency of failure of the cash flow to avoid one or more predefined risks. Applying user-selected weights to frequencies of failure to avoid specified risks supplemented by the application of user-selected weight to rate of return, the invention produces a performance index. Through methodical asset allocation adjustments, the optimum performance index is determined, thereby identifying the optimum asset allocation for the given criteria.
2. Background of the Related Art
Trustees of pension funds seek the highest possible investment return within acceptable risk parameters. Heavy investments in common stock produce high returns, for example, but these returns are volatile, and this volatility may lead to an unacceptable frequency of failure to avoid certain kinds of risk. Investments in cash equivalents are far less volatile, but yields are unacceptably low and, accordingly, plans with such assets may experience unacceptable frequency of failure to avoid other kinds of risk. An optimum asset allocation made up of stocks, bonds, cash equivalents and other asset classes is therefore desirable to minimize frequency of failure to avoid predefined risks while maintaining acceptable returns. It is difficult, however, to determine what mix of asset classes and in what proportion the best performance likelihood is produced, taking into consideration user-identified risk avoidance criteria.
Various methods are currently used by pension fund managers in an attempt to maximize return while minimizing risk. For example, one such method of solving the problem of maximizing return while minimizing risk involves developing the asset allocation likely to produce the highest return at a given level of portfolio volatility. This method, however, is not a plan-specific solution and therefore may not produce the best results for a given plan. Another approach is to develop the asset allocation which, within a stipulated time horizon at the calculated plan contribution level, will lead to an acceptable probability of achieving a selected funded ratio of assets to liabilities. While this approach is plan-specific, as different solutions apply to different plans with different levels of assets, such an approach involves consideration of probability of meeting one goal at a fixed point in time, rather than frequency of failure to avoid multiple risks at multiple time frames. Moreover, such an approach requires a sophisticated understanding of the manner in which liabilities are developed. For example, funding ratios can change with changes in actuarial assumptions, creating a degree of artificiality in the measurement. Finally, a focus on a stipulated time horizon involves a restricted view which can be modified only upon considerable revision.
In view of the above, it is an object of the invention to provide a method of determining an optimum allocation of assets to generate a maximum rate of return for an investment portfolio within acceptable risk level(s), overcoming the deficiencies of the conventional methods discussed above.
SUMMARY OF THE INVENTION
The invention provides a non-sophisticated method of simulating future cash flow for a given asset allocation under a variety of economic conditions, measuring the frequency of failure of the cash flow to avoid one or more predefined risks. Assigning user-selected weights to avoidance of specified risks and alternative user-selected weights to maximization of rate of return, the invention utilizes the cash flow simulation to produce a performance index. By methodological testing through asset allocation adjustments, the optimum performance index is determined, thereby identifying the optimum asset allocation.
The simulation of cash flow generates a plurality of asset cash flow projections for a given asset allocation that are evaluated by (i) counting plan-specific failures to avoid predefined risks and (ii) determining average investment return, and applying user-selected weightings to the predefined risk failure rates and average return for each asset allocation. The predefined risks are generally established at a threshold multiple of a risk factor as of a given time or within a given time frame, such as no less than a specific percentage of payroll costs at, for example, five years from the commencement of the instant analysis or assets less than a multiple of benefits outflow at any time prior to for example, ten years from the commencement date of the instant analysis.
The occurrence of an asset cash flow projection falling below the risk tolerance baseline at a point in time or within a baseline time period defines a risk tolerance failure event. For the asset cash flow projections associated with a given asset allocation, the number of risk tolerance failure events is multiplied by the associated weight for each predefined risk. A weighted average return (or weighted average gain cost) is introduced. The asset allocation is then adjusted within allowable asset class limits and the process is repeated until the highest-weighted result, identified as the highest performance index, is achieved. This then is the optimum asset allocation.
This invention determines a plan specific optimal asset allocation, where plan specific means the computer process produces a result for any particular plan described by its projected benefit cashflow and projected covered payroll or alternatively by its specific characteristics such as one or more:
its particular plan membership (each active member having an identifying salary history, date of birth, sex and date of hire or other date of plan participation commencement . . . and each pensioner and designated survivor having identifying date of birth, sex and formulated current or deferred annual benefit stream).
its particular plan design representing the rules for benefit eligibility and how a benefit is calculated.
its particular funding status (plan assets on hand) and its particular sources of future new funds determined by its specific financing formula.
and/or any other feature of the particular plan.
Optimal asset allocation means dividing or distributing the current and/or future plan assets among one or more available asset classes (e.g., domestic common stock, foreign bonds, real estate, cash equivalents, etc.) in that particular tolerable arrangement, demonstrated by a simulation of, for example, future financial projections of user-selected risk tolerance factors in association with user-selected risk tolerance baselines, likely to produce the best or preferred risk tolerance failure performance as measured by a performance index.
Tolerable asset allocation is one whose proportionate arrangement falls within, for example, the user's predetermined range of acceptable asset allocation assignments to the one or more available asset classes (e.g., no less than 40 percent nor more than 75 percent of the portfolio shall consist of domestic equities, no less than 10 percent nor more than 50 percent of the portfolio shall consist of domestic bonds, etc.).
Simulation of a future financial projection shall be, for example, a large or substantial number of such financial projections each generated by (or as the result of) a series of, for example, Monte Carlo controlled random inflation and “real” return (return net of inflation) selections from the past, user modified past, or parametrically anticipated future behavior of plan assets invested in accordance with the selected asset allocation (e.g., a large number of cash flow projections of future plan asset levels or a large number of future fundable plan cost p
Friend Edward H.
McCrory Robert T.
Donner Irah H.
EFI Actuaries
Hale and Dorr LLP
Meinecke-Diaz Susanna
Stamber Eric W.
LandOfFree
Method of determining optimal asset allocation utilizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of determining optimal asset allocation utilizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of determining optimal asset allocation utilizing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2481010