Method of detecting a collision risk and preventing air...

Communications: electrical – Aircraft alarm or indicating systems – Potential collision with other aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S963000, C340S964000, C701S301000, C701S302000

Reexamination Certificate

active

06201482

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to procedures for identifying a risk of a collision and for avoiding collisions in aviation.
The TCASII (Traffic Collision Avoidance System) for the avoidance of collisions has become known and is described, for example, in the FAA Document, Reprint by BFS, “TCASII System Description”, Washington, D.C., USA 1993. The equipping of all aircraft comprising more than thirty seats which are authorised in the USA with this system has been prescribed in the USA since 1993. It provides the pilots of aircraft with a direct warning of possible conflicts with other aircraft in the vicinity. Independently of the ground control and of the visibility conditions, the pilot of the aircraft is provided with the possibility of recognising potential conflicts in good time and of reacting to them. The algorithm which forms the basis of TCASII is not intended for the purpose of controlling normal aviation traffic. It is simply intended to avoid a collision in the event of inappropriate behaviour by aviation participants or by ground control.
This algorithm is based on the TAU criterion, which determines the relative time of approach of two aircraft up to the time of the nearest approach. For this purpose, the transponders of the aircraft involved are repeatedly and actively interrogated. The time to the furthest approach is then calculated for constant flying behaviour. If a defined time threshold up to the furthest approach is undershot, the system reacts and proposes a vertical evasive manoeuvre to the pilot of the aircraft.
In the vicinity of the ground, the operation of TCAS is limited, and TCAS cannot be used for traffic taxiing on the ground. Moreover, vertical evasive manoeuvres are not in accordance with recognised evasive rules. For the vertical evasive manoeuvres which are proposed, there is the risk of flying through other flying levels and of endangering other participants in air traffic.
The underlying object of the procedure according to the invention is to provide the pilot with a visualisation, in an illustrative manner, of conflict potentials which actually exist, so that the pilot can make safe decisions regarding evasive routes. Apart from the detection of the conflict potential which actually exists, the object is also to make possible the automatic proposal of evasive routes without further risks arising at the same time.
In one procedure for identifying a risk of a collision, the object according to the invention is achieved in that for each aircraft concerned, probabilities are calculated with which the aircraft will be situated in predetermined space elements at a plurality of selected times (occupancy probabilities), and that from the occupancy probabilities of the aircraft concerned and the occupancy probabilities of other objects, the probabilities of the simultaneous occupancy of each space element by the aircraft concerned and by at least one of the other objects (collision probabilities) are calculated for the predetermined space elements and the selected times.
SUMMARY OF THE INVENTION
Like the known TCASII procedure, the aim of the procedure according to the invention is not to control normal air traffic, but is simply to avoid a collision and to assist the selection of an evasive route in the event of inappropriate behaviour by the pilots of aircraft or by ground control, or if there is a lack of ground control.
The procedure according to the invention has the advantage that the anticipated behaviour of more than two aircraft involved is taken into consideration, and that there is no danger to third parties, particularly if all aircraft involved are equipped with devices for carrying out the procedure according to the invention.
In the procedure according to the invention, it is possible to provide the pilot of the aircraft with a display of the risk potentials which is easily recorded. In particular, this can be effected by a graphical display of the space elements, with the occupancy probability of the aircraft concerned and that of the other objects which are calculated each time, on a display device, and/or by displaying, in emphasised form, space elements for which the collision probability exceeds a predetermined value.
Moreover, for the avoidance of collisions by the procedure according to the invention, an evasive route for the aircraft concerned can be calculated and displayed if for at least one space element the probability of simultaneous occupancy by the particular object and by at least one other object exceeds a predetermined value.
One advantageous embodiment facilitates a particularly favourable calculation of an evasive route by calculating a plurality of evasive routes, with an excursion which increases from evasive route to evasive route, as a test in accordance with recognised or determined evasive rules, by selecting and displaying the calculated evasive route which gives a probability of a hazardous encounter below a predetermined threshold value at the smallest excursion or by converting it into a control command, and, when a limiting excursion is reached without the probability of a hazardous encounter being correspondingly reduced, by calculating evasive routes in another direction.
In order to identify the risk of collision with other aircraft, provision is made in the procedure according to the invention for occupancy probabilities to be calculated for other aircraft which are situated within a relevant distance.
According to another embodiment of the invention, provision is made for fixed objects on the ground to be taken into consideration with an occupancy probability of 1 for the display of the space elements and/or for the calculation of evasive routes. These objects, for example buildings or elevations on the ground, can be stored in a database and can be retrieved in each case for an air space which is to be considered.
The procedure according to the invention can thus be designed in such a way that it operates purely as a traffic collision avoidance system without a database for fixed objects on the ground, or so that it determines risks of collisions on the ground and in the air using a database. Finally, a design as a ground collision avoidance system is also possible, in which other aircraft situated in the air are not recorded.
The procedure according to the invention also has the advantage that it can also be used for movements on the ground for the avoidance of hazardous encounters or collisions, wherein fixed obstacles are stored in a database and motor vehicles can be treated similarly to other aircraft.
The space elements themselves can assume various forms. However, an embodiment which is advantageous for the individual calculations provides for the space elements to be in the form of a parallelepipeds.
In another embodiment of the procedure according to the invention, the size of the space elements is variable, wherein the size increases with increasing flying height. In this connection, provision is preferably made for it to be possible to vary the size of the space elements within three classes, namely the smallest space elements for taxiing on the ground, medium space elements for flying heights less than 10,000 feet, and large space elements for greater flying heights. Thus the size of the space elements is matched to the prevailing speed in each case and to the accuracy of distance which is necessary due to the density of traffic.
One advantageous embodiment of the procedure according to the invention consists of calculating probabilities—hereinafter also called occupancy probabilities—from the respective position, course and course over the ground of the aircraft, from the flying speed and the speed over the ground, and from the speed of changing course and the speed of ascent/descent, wherein a multiplicity of calculations is made with variations of the flying speed, of the speed of changing course and of the speed of ascent/descent. In particular, provision is made at the same time for the values of the flying speed, of the speed of changing course and of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of detecting a collision risk and preventing air... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of detecting a collision risk and preventing air..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of detecting a collision risk and preventing air... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467820

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.