Method of dehalogenating hydrocarbon containing...

Chemistry of hydrocarbon compounds – Unsaturated compound synthesis – By addition of entire unsaturated molecules – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S861000, C585S868000, C208S262100, C208S262500, C208S263000

Reexamination Certificate

active

06476284

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a novel method for removing halogens such as fluorine and chlorine in olefin compounds using inorganic solid agent containing aluminum atoms. The halogen is contained as trace residual impurities in the olefin compounds in the forms of organic compounds, inorganic compounds or mixtures of them. Furthermore, the method of the present invention is characterized in that the isomerization of non-conjugated carbon-carbon double bonds in the olefin compounds can be suppressed substantially. Especially, even in the removal treatment done for a long period time, the present invention provides a method to suppress the above-mentioned isomerization substantially. Still further, the present invention relates to a method for producing highly reactive butene oligomers, in which the above method is applied to butene oligomers that is obtained by polymerization of butenes, thereby effectively reducing the content of terminal fluorinated groups formed at terminals of oligomers, in addition, converting the terminal fluorinated groups into useful terminal vinylidene groups which are highly reactive.
BACKGROUND ART
Butene oligomers having regular repeating structural units and vinylidene structures at their terminals of molecules are good in thermal decomposition property owing to the regularity of the repeating structural units and the uniformity in the distribution of terminal groups having a specific structure. Furthermore, they can react with maleic acid or the like in high yield. Polybutenyl succinic anhydride obtained by this reaction is further modified with amines into compounds, which are used industrially on a large scale because of their usefulness as additives for lubricant oils or fuel oils.
The useful butene oligomers as referred to in the foregoing passage are produced by polymerizing butenes such as isobutene in the presence of boron trifluoride catalyst (e.g., U.S. Pat. Nos. 4,152,499 and 4,605,808). Another method for producing butene polymers using aluminum chloride complex catalyst containing an organic nitro-compound as complexing agent is disclosed in U.S. Pat. No. 5,012,030.
However, among the butene oligomers produced through these methods, fluorine atoms, for example, derived from the boron trifluoride catalyst often remain as much as about 200 ppm (by weight). When the butene oligomers are converted into additives for lubricant oils or fuel oils or thus converted fuel oil additives are burned in running engines, the residual fluorine is decomposed into hydrogen fluoride, which may cause the corrosion of apparatus and the pollution of environment.
When polymerization is carried out using pure isobutene as a starting material and boron trifluoride as catalyst, it is possible to produce butene oligomer of the content of residual fluorine as low as 1 to 10 ppm as fluorine atom, by adjusting the molar ratio of boron trifluoride in catalyst and the complexing agent. However, the use of pure isobutene is costly and it is not advantageous in view of industrial practice. Moreover, it is necessary to carry out certain operations for dehalogenation in order to obtain a substantially halogen-free products.
On the other hand, when inexpensive butadiene raffinate can be obtained as a starting material in practical working, the formation of the residual fluorine originating from catalysts cannot be avoided, as long as boron trifluoride is used as catalyst. Furthermore, when a post-treatment is adopted for removing the residual fluorine, it causes a problem that the features of butene oligomer such as the regularity of the repeating structural units and the uniform presence of specific terminal groups are destroyed. By the way, when isobutene or butadiene raffinate is polymerized by using catalysts of aluminum chloride or its complex, chlorine sometimes remains and causes the same problem as in the case of boron trifluoride complex catalysts containing alcohols as complexing agents.
For example, in Japanese Laid-Open Publication No. S57-183726 (corresponding to U.S. Pat. No. 4,417,091), it is proposed that a butene fraction is polymerized into oligomer with a fluorine-containing nickel catalyst and the fluorine contained in the obtained olefin trimer is removed by the treatment with silica gel, for example. However, as shown in comparative examples later, in the case of polymers obtained by polymerizing C
4
fractions using boron trifluoride as catalyst, the treatment with silica gel cannot remove fluorine sufficiently.
As a further problem, it is sometimes noticed that double bonds in polymer are isomerized during the treatment so that the high content of terminal vinylidene group formed by polymerization is reduced. Incidentally, each isomerization (transfer) of carbon-carbon double bond in polymer is a kind of chemical reaction, and is sometimes accelerated with specific catalyst respectively.
The present inventors found out that they could accomplish dehalogenation while preventing double bonds from isomerizing by bringing polymers into contact with inorganic solid agent containing aluminum atoms.
As the result of further study by the present inventors, the following has become clear concerning the butene polymer that has been obtained according to the description of U.S. Pat. No. 4,605,808 mentioned above. When the butene polymer having a high content of terminal vinylidene structure and containing several ten to several hundred ppm of fluorine as organic fluorine impurity is brought into contact with alumna, isomerization of terminal vinylidene structure as a side reaction shown in the next formula is caused to occur remarkably as the treatment continues. After all, the content of terminal vinylidene structure is reduced by the treatment with alumina in a long period of operation.
 (CH
3
)
3
C[CH
2
C(CH
3
)
2
]
n
CH
2
C(CH
3
)═CH
2
→(CH
3
)C[CH
2
C(CH
3
)
2
]
n
CH═C(CH
3
)
2
When butene polymers separately produced and containing no fluorine compound are treated with alumina, the above isomerization can be hardly recognized. Therefore, the phenomenon that the content of terminal vinylidene structure is reduced cannot be attributed to the effect by alumina itself of accelerating isomerization.
In the above example, the removal of fluorine compound contained in the butene polymer having a high content of terminal vinylidene structure is explained. However, as to unreacted C
4
fraction remaining after polymerization of butadiene raffinate with fluorine-containing catalyst, there is the same problem.
Because the above unreacted C
4
fraction is usually burned as a fuel intact or after 1-butene useful as a co-monomer for adjusting the density of high density polyethylene has been separated and removed, the concentration of the residual fluorine makes a problem for the same reason as in the case of butene polymer. In this case, dehalogenating treatment with an inorganic solid agent containing aluminum atoms is also useful and economic. However, 1-butene is likely to be isomerized to 2-butene in the similar manner to that shown in the above formula. When unreacted C
4
fraction in particular is used as a source of supply of 1-butene, it is important to suppress the isomerization of 1-butene to 2-butene.
When the present inventors investigated the above phenomenon of isomerization energetically, they have found out that fluorine fixed on alumina generates new acidic sites in addition to those inherent in alumina so that the isomerizability of alumina itself changes and the isomerization is accelerated.
In other words, it is supposed that fluorine atoms fixed on alumina form new strong Lewis acidic sites there, and the newly formed strong Lewis acidic sites accelerate the isomerization of non-conjugated carbon-carbon double bonds on the occasion of contact treatment for defluorination. The above-mentioned isomerizability increases with the total amount of the fluorine removed by defluorinating treatment, that is, the fluorine fixed on alumina by defluorinating treatment.
For example, in Japanese Pat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of dehalogenating hydrocarbon containing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of dehalogenating hydrocarbon containing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of dehalogenating hydrocarbon containing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2931181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.