Semiconductor device manufacturing: process – Chemical etching – Vapor phase etching
Reexamination Certificate
2001-03-26
2003-02-04
Powell, William A. (Department: 1765)
Semiconductor device manufacturing: process
Chemical etching
Vapor phase etching
C216S067000, C257S437000, C438S717000, C438S720000, C438S724000, C438S743000
Reexamination Certificate
active
06514868
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of integrated circuits and to methods of manufacturing integrated circuits. More particularly, the present invention relates to a method of creating a smaller contact using a hardmask.
BACKGROUND OF THE INVENTION
Semiconductor devices or integrated circuits (ICs) can include millions of devices, such as, transistors. Ultra-large scale integrated (ULSI) circuits can include complementary metal oxide semiconductor (CMOS) field effect transistors (FET). Despite the ability of conventional systems and processes to fabricate millions of IC devices on an IC, there is still a need to decrease the size of IC device features, and, thus, increase the number of devices on an IC.
One limitation to achieving smaller sizes of IC device features is the capability of conventional lithography. In general, projection lithography refers to processes for pattern transfer between various media. According to conventional projection lithography, a silicon slice, the wafer, is coated uniformly with a radiation-sensitive film or coating, the photoresist. An exposing source of radiation (such as light, x-rays, or an electron beam) illuminates selected areas of the surface through an intervening master template, the mask, for a particular pattern. The lithographic coating is generally a radiation-sensitized coating suitable for receiving a projected image of the subject pattern. Once the image is projected, it is indelibly formed in the coating. The projected image may be either a negative or a positive image of the subject pattern.
Exposure of the coating through a photomask or reticle causes the image area to become selectively crosslinked and consequently either more or less soluble (depending on the coating) in a particular solvent developer. The more soluble (i.e., uncrosslinked) or deprotected areas are removed in the developing process to leave the pattern image in the coating as less soluble polymer.
Projection lithography is a powerful and essential tool for microelectronics processing. As feature sizes are driven smaller and smaller, optical systems are approaching their limits caused by the wavelengths of the optical radiation.
One alternative to projection lithography is EUV lithography. EUV lithography reduces feature size of circuit elements by lithographically imaging them with radiation of a shorter wavelength. “Long” or “soft” x-rays (a.k.a., extreme ultraviolet (EUV)), wavelength range of lambda=50 to 700 angstroms are used in an effort to achieve smaller desired feature sizes.
In EUV lithography, EUV radiation can be projected onto a resonant-reflective reticle. The resonant-reflective reticle reflects a substantial portion of the EUV radiation which carries an IC pattern formed on the reticle to an all resonant-reflective imaging system (e.g., series of high precision mirrors). A demagnified image of the reticle pattern is projected onto a resist coated wafer. The entire reticle pattern is exposed onto the wafer by synchronously scanning the mask and the wafer (i.e., a step-and-scan exposure).
Although EUV lithography provides substantial advantages with respect to achieving high resolution patterning, errors may still result from the EUV lithography process. For instance, the reflective reticle employed in the EUV lithographic process is not completely reflective and consequently will absorb some of the EUV radiation. The absorbed EUV radiation results in heating of the reticle. As the reticle increases in temperature, mechanical distortion of the reticle may result due to thermal expansion of the reticle.
Both conventional projection and EUV lithographic processes are limited in their ability to print small features, such as, contacts, trenches, polysilicon lines or gate structures. As such, the critical dimensions of IC device features, and, thus, IC devices, are limited in how small they can be.
Thus, there is a need to pattern IC devices using non-conventional lithographic techniques. Further, there is a need to form smaller feature sizes, such as, smaller contact holes. Yet further, there is a need to use etch profile variation to create a tapered angle to offset the critical dimension for smaller contact holes.
SUMMARY OF THE INVENTION
An exemplary embodiment of the invention is related to a method of forming a contact hole having a critical dimension which is smaller than the critical dimension possible using conventional lithographic techniques. This method can include providing a hard mask over a layer of material in which a contact hole is to be formed; etching the hard mask with a first critical dimension at the top of the hard mask and a second critical dimension at the bottom of the hard mask; and etching a contact hole using the hard mask to transfer the second critical dimension to the contact hole.
Briefly, another exemplary embodiment is related a method of manufacturing an integrated circuit. This method can include patterning a standard feature size on an anti-reflective coating (ARC) layer disposed over an inter-level dielectric (ILD) layer; etching the patterned metal layer and ARC layer to create a tapered profile in the ARC layer; and etching a contact hole in the ILD layer using the patterned ARC layer as the hard mask. The etched contact hole in the ILD layer has a smaller size than the standard feature size due to the tapered profile in the ARC layer.
Briefly, another embodiment is related to an integrated circuit having contacts. The integrated circuit is manufactured by an advantageous method which can include providing a hard mask over a layer of material in which a contact hole is to be formed; etching the hard mask with a first critical dimension at the top of the hard mask and a second critical dimension at the bottom of the hard mask; and etching a contact hole using the hard mask to transfer the second critical dimension to the contact hole.
Other principle features and advantages of the present invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
REFERENCES:
patent: 4487652 (1984-12-01), Almgren
patent: 4560436 (1985-12-01), Bukhman et al.
patent: 5753418 (1998-05-01), Tsai et al.
patent: 5776836 (1998-07-01), Sandhu
patent: 5821169 (1998-10-01), Nguyen et al.
patent: 5913148 (1999-06-01), Hills
Hui Angela T.
Singh Bhanwar
Foley & Lardner
Powell William A.
LandOfFree
Method of creating a smaller contact using hard mask does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of creating a smaller contact using hard mask, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of creating a smaller contact using hard mask will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3147157