Method of controlling release of N-substituted derivatives...

Food or edible material: processes – compositions – and products – Normally noningestible chewable material or process of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S006000

Reexamination Certificate

active

06692778

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods for producing chewing gum. More particularly the invention relates to producing chewing gum containing high-potency sweeteners which have been treated to control their release and enhance shelf-life stability.
In recent years, efforts have been devoted to controlling release characteristics of various ingredients in chewing gum. Most notably, attempts have been made to delay the release of sweeteners and flavors in various chewing gum formulations to thereby lengthen the satisfactory chewing time of the gum. Delaying the release of sweeteners and flavors can also avoid an undesirable overpowering burst of sweetness or flavor during the initial chewing period. On the other hand, some ingredients have been treated so as to increase their rate of release in chewing gum.
In addition, other efforts have been directed at perfecting the use of high-potency sweeteners within the chewing gum formulation, to thereby increase the shelf-life stability of the ingredients, i.e. the protection against degradation of the high-potency sweetener over time.
A recently identified class of high potency sweeteners are N-substituted derivatives of aspartame. Some of these sweeteners may give a long lasting sweetness release when used in chewing gum, while others may give a fast release that may not be compatible with the release of flavor. By modifying N-substituted derivatives of aspartame by various methods, a controlled release from chewing gum can be more effective to balance sweetness with flavor and give a highly consumer acceptable product.
The class of N-substituted derivatives of aspartame useful in the present invention are described in U.S. Pat. No. 5,480,668. One particularly preferred N-substituted derivative of aspartame is commonly known as neotame. The chemical name of this sweetener is N-[N-(3,3-dimethylbutyl)-L-&agr;-aspartyl]-L-phenylalanine 1-methyl ester. Other preferred N-substituted derivatives of aspartame sweeteners include two other similar chemicals, namely N-[N-[3-(4-hydroxy-3-menthoxyphenyl)propyl]-L-&agr;-aspartyl]-L-phenylalanine 1-methyl ester and N-[N-(3-phenylpropyl)-L-&agr;-aspartyl]-L-phenylalanine 1-methyl ester. A method for preparing neotame is disclosed in U.S. Pat. Nos. 5,510,508 and 5,728,862. Each of the foregoing patents is hereby incorporated by references.
Other patents disclose how a sweetener like aspartame can be physically modified to control its release rate in chewing gum.
For example, U.S. Pat. No.4,597,970 to Sharma et al. teaches a process for producing an agglomerated sweetener wherein the sweetener is dispersed in a hydrophobic matrix consisting essentially of lecithin, a glyceride, and a fatty acid or wax having a melting point between 25° C. and 100° C. The method disclosed uses a spray-congealing step to form the sweetener-containing matrix into droplets, followed by a fluid-bed second coating on the agglomerated particles.
U.S. Pat. Nos. 4,515,769 and 4,386,106, both to Merrit et al., teach a two step process for preparing a delayed release flavorant for chewing gum. In this process, the flavorant is prepared in an emulsion with a hydrophilic matrix. The emulsion is dried and ground, and the resulting particles are then coated with a water-impermeable substance.
U.S. Pat. No. 4,230,687 to Sair et al. teaches a process for encasing an active ingredient to achieve gradual release of the ingredient in a product such as chewing gum. The method described involves adding the ingredient to an encapsulating material in the form of a viscous paste. High-shear mixing is used to achieve a homogeneous dispersion of the ingredient within the matrix, which is subsequently dried and ground.
U.S. Pat. No. 4,139,639 to Bahoshy et al. teaches a process of “fixing” aspartame by co-drying (by spray drying or fluid-bed coating) a solution containing aspartame and an encapsulating agent, such as gum arabic, to thereby surround and protect the aspartame in the gum during storage.
U.S. Pat. No. 4,384,004 to Cea et al. teaches a method of encapsulating aspartame with various solutions of encapsulating agents using various encapsulation techniques, such as spray drying, in order to increase the shelf-stability of the aspartame.
U.S. Pat. No. 4,634,593 to Stroz et al. teaches a method for producing controlled release sweeteners for confections, such as chewing gum. The method taught therein involves the use of an insoluble fat material which is mix mulled with the sweetener.
SUMMARY OF INVENTION
The present invention includes a method for producing chewing gum with a modified high-potency sweetener, specifically an N-substituted derivative of aspartame, as well as the chewing gum so produced. The modified release high-potency sweetener is obtained by modifying the sweetener by encapsulation, partial encapsulation or partial coating, entrapment, absorption or extrusion with high water-soluble materials or with low water-soluble materials, also called water-insoluble materials. The procedures for modifying the sweetener include spray drying, spray chilling, fluid-bed coating, coacervation, and other agglomerating and standard encapsulating techniques. The sweetener may also be absorbed onto an inert or water-insoluble material or into a water-soluble material. The sweetener may be modified in a multiple step process comprising any of the processes or combination of processes noted. The sweetener may also be combined with other sweeteners including, but not limited to, sucrose, dextrose, fructose, maltose, maltodextrin, xylose, palatinose, or others that are considered bulk sweeteners, as well as polyols including but not limited to sorbitol, mannitol, xylitol, maltitol, lactitol, hydrogenated isomaltulose, and hydrogenated starch hydrolysates. The high-potency N-substituted derivative of aspartame sweetener may also be combined with other high-potency sweeteners including, but not limited to, thaumatin, aspartame, acesulfame K, sodium saccharin, sucralose, alitame, cyclamate, stevioside, glycyrrhizin and dihydrochalcones.
This sweetener, when modified according to the present invention, gives a chewing gum having a controlled-release sweetener. In some instances, a lower quantity of sweetener can be used to give initial impact or in other instances, a higher quantity of sweetener can be used without resulting in a high initial sweetness impact, but instead having a long delayed sweetness release that is compatible with the delayed flavor release in chewing gum, giving a highly consumer-acceptable chewing gum product.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Neotame is a high-potency sweetener which is about 8,000 times sweeter than sugar and about 40 times sweeter than aspartame. It is one of several N-substituted derivatives of aspartame disclosed in U.S. Pat. No. 5,480,668 that are suitable as sweetening agents in the present invention.
At concentrations usually used, neotame has a lingering sweet taste and may be especially useful in chewing gum. Neotame was developed by the Nutrasweet Co., a division of Monsanto Company, which has filed a U.S. F.D.A. food addition petition. Because it is the most common of the N-substituted derivatives of aspartame, neotame's specific use in the present invention will be discussed. However, the other N-substituted derivatives of aspartame disclosed in U.S. Pat. No. 5,480,668 may be treated and used in chewing gum at appropriate levels in the same way neotame is treated and used. Therefore, reference hereafter specifically to neotame should also be considered as suggestions to use the other N-substituted derivatives of aspartame as well.
The use of neotame in chewing gum has previously been suggested, but because of its possible low water solubility, it may have a slow release and could require modification to control its release from chewing gum. When neotame is added to chewing gum at a level of about 0.0001% to 0.1%, the sweetener may give chewing gum an intense sweetness that lingers. It would be considere

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling release of N-substituted derivatives... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling release of N-substituted derivatives..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling release of N-substituted derivatives... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3352780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.