Method of controlling diode-laser wavelength in a...

Coherent light generators – Particular beam control device – Optical output stabilization

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S034000

Reexamination Certificate

active

06292498

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to diode-laser-pumped solid-state lasers (DPSS-lasers). The invention relates in particular to a DPSS-laser wherein the output wavelength of a pumping diode-laser is automatically maintained at an optimum value by a closed loop arrangement for controlling the temperature of the diode-laser.
DISCUSSION OF BACKGROUND ART
Diode-lasers are preferred as pump-light sources for solid-state lasers, inter alia, because they can be designed to emit at essentially any wavelength within a wavelength range determined by particular semiconductor materials used for their manufacture. The wavelength (pump-wavelength) can be selected to match a preferred absorption band of a solid-state gain-medium being pumped. This provides that essentially the entire output of the diode-laser is effective in pumping the gain-medium. This, together with the well-known efficiency of the diode-laser, provides a corresponding high efficiency for the DPSS-laser as a whole.
One disadvantage of such a highly selective pumping arrangement, however, is that if the emitting-wavelength of the diode-laser changes, the efficiency of the DPSS-laser can change dramatically. The output-wavelength of a diode-laser, at any given temperature, is known to change, over time, as the diode-laser is used, i.e., with operational “aging”. Accordingly, if the performance of a DPSS-laser is to be maintained at an optimum level, some means must be provided for maintaining the emitting-wavelength of the diode-laser at the pump-wavelength.
SUMMARY OF THE INVENTION
The present invention is directed to a method for compensating for changes in the emitting-wavelength of a diode-laser light-source used to optically pump a solid-state gain-medium in a DPSS-laser. The diode-laser light-source is driven by electrical current supplied thereto. The diode-laser light-source has an emitting-wavelength dependent on the temperature of the diode-laser light-source. The gain-medium has a pump-wavelength at which pump-light is maximally absorbed therein.
In one embodiment of the present invention for maintaining the emitting-wavelength of the diode-laser light source at the pump-wavelength, electrical current supplied to the diode-laser light-source is controlled to maintain a constant light-output from the DPSS-laser. The temperature of the diode-laser light-source is periodically varied such that the temperature of the diode-laser light-source is periodically and sequentially higher and lower by equal increments than a nominal temperature. Electrical current supplied to the diode-laser light-source is periodically monitored at the higher and lower temperatures of the diode-laser light-source. If the electrical currents monitored at the higher and lower temperatures of the diode-laser light-source are different, the nominal temperature is changed to a value at which electrical currents monitored at the higher and lower temperatures are equal.
A difference in the monitored electrical currents at the higher and lower temperatures of the diode-laser light-source is detected when the emitting-wavelength of the diode-laser light-source is different from the optimally absorbed wavelength (pump-wavelength). Equalizing the monitored electrical currents at the higher and lower diode-laser light-source temperatures by changing the nominal temperature, changes the emitting-wavelength of the diode-laser light-source to the pump-wavelength.
In another embodiment of the present invention, the electrical current supplied to the diode-laser light-source is controlled such that it is constant. Again, the temperature of the diode-laser light-source is periodically varied such that the temperature of the diode-laser light-source is periodically and sequentially higher and lower by equal increments than a nominal temperature. Light-output of the DPSS-laser is monitored at the higher and lower temperatures of the diode-laser light-source. If the DPSS-laser light-outputs monitored at the higher and lower temperatures of the diode-laser light-source are different, the nominal temperature is changed to a value at which DPSS-laser light-outputs monitored at the higher and lower temperatures are equal.
A difference in the monitored DPSS-laser light-outputs at the higher and lower temperatures of the diode-laser light-source is detected when the emitting-wavelength of the diode-laser light-source is different from the pump-wavelength. Equalizing the monitored DPSS-laser light-outputs at the higher and lower diode-laser light-source temperatures by changing the nominal temperature changes the emitting-wavelength of the diode-laser light-source to the pump-wavelength.


REFERENCES:
patent: 3659942 (1972-05-01), Vergato
patent: 5754574 (1998-05-01), Lofthouse-Zeis et al.
patent: 5926495 (1999-07-01), Guch, Jr.
patent: 43 23 197 (1993-07-01), None
patent: 02190290 (1990-07-01), None
“Notification of Transmittal of the International Search Report or the Declaration,” in PCT Patent Appln. No. PCT/US00/06812 (Int'l filing date Mar. 15, 2000), mailed Jul. 12, 2000, 8 pages in length.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling diode-laser wavelength in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling diode-laser wavelength in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling diode-laser wavelength in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.