Method of controlling brake pipe pressure

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S070000, C301S015000, C301S020000

Reexamination Certificate

active

06249722

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to brake control equipment for a train. More particularly, the present invention pertains to an improved method of controlling the pressure within the brake pipe of a train.
BACKGROUND OF THE INVENTION
A typical train includes one or more locomotives, a plurality of railcars and several trainlines. The trainlines include both pneumatic and electrical lines most of which run from the lead locomotive to the last railcar in the train. One pneumatic trainline is the brake pipe. The brake pipe consists of a series of individual pipe lengths each of which secured to the underside of one railcar. Each pipe length is interconnected to another such pipe length via a flexible coupler situated between each railcar. Usually controlled so as to mimic the pressure contained in a storage tank called the equalizing reservoir, the brake pipe is thus one long continuous pipe that runs essentially from the lead locomotive to the last railcar. This pipe conveys the pressurized air that is required by the brake control system to charge the various reservoirs and operate the brake control valves of each railcar in the train.
In a locomotive, the pneumatic trainlines include an actuating pipe, a main reservoir equalizing (MRE) pipe, and an independent application and release (IAR) pipe, in addition to the brake pipe. Within a locomotive consist (i.e., two or more locomotives connected together), the MRE, actuating and IAR pipes of each locomotive connect to the MRE, actuating and IAR pipes of adjacent locomotives. The IAR pipe supplies the compressed air that may be used to control the delivery of pressurized air to, and thus to operate, the air brakes of each locomotive in the train.
The brakes of a train, whether on railcars or locomotives, are applied using brake cylinders and associated components. During braking, the brake cylinders convert the pressurized air that they receive to mechanical force. From the brake cylinders this force is transmitted by mechanical linkage to the brake shoes. When the brakes are applied, it is the brake shoes that are ultimately used to slow or stop the rotation of the wheels on every vehicle in the train.
A typical locomotive has a brake control system such as any one of the various EPICS Brake Equipment Systems produced by the Westinghouse Air Brake Company (WABCO). These brake control systems generally include a cab station unit, a keyboard, a display, a locomotive interface unit, a brake control computer and a pneumatic operating unit. The cab station unit generates various signals including those representing the positions of the automatic and independent brake handles, and conveys commands corresponding thereto to the brake control computer. The keyboard also permits a train operator to access the brake equipment, allowing, for example, the operator to input certain set-up parameters. The display allows the operation of the brake equipment to be monitored. The locomotive interface unit (LIU) connects electrical power and certain trainlines to the brake equipment and provides various signals to the brake control computer. Based on the inputs it receives and the software that dictates its operation, the brake control computer essentially controls the overall operation of the brakes. Shown in
FIG. 1
, the pneumatic operating unit (POU) controls the pressures in the pneumatic trainlines and in various reservoirs so as to control the brakes according to commands received from the brake control computer.
The POU features a pneumatic laminate to which the brake control computer and various pneumatically and electropneumatically operated devices mount. The design of the laminate allows these components to be removed for repair and maintenance without disturbing the piping or wiring of the locomotive. Through a number of ports and internal passages, the pneumatic laminate interconnects these devices to each other and to branch pipes that carry air from or to the actuating pipe, the MRE pipe, the IAR pipe, the brake pipe, the brake cylinder and/or various storage tanks such as the equalizing reservoir. It is through the ports and internal passages of the pneumatic laminate that these devices communicate fluidly with each other and the pneumatic pipes on the train.
Among the devices mounted to the laminate are the independent application and release (IAR) portion, the brake cylinder (BC) control portion and the brake pipe (BP) control portion shown in FIG.
1
. These operating portions of the POU are primarily controlled by the brake control computer. The IAR portion features pneumatic logic circuitry along with solenoid operated valves by which the pressure in both the actuating and IAR pipes can be controlled. The BC control portion also features pneumatic logic circuitry along with solenoid operated valves by which the pressure in the brake cylinders on the locomotive can be controlled. The BC control portion controls the pressure in the locomotive brake cylinders in response to the commands generated by movement of either of the two brake handles. These automatic and independent brake demand signals may also be generated by pressure changes in the brake pipe, the IAR pipe, the back-up brake or the penalty brake circuitry. The BP control portion uses pneumatic logic circuitry and solenoid operated valves by which the pressure in the equalizing reservoir and thus the brake pipe of the train can be controlled. Shown in
FIG. 2
, the BP control portion also controls the emergency venting and brake pipe cut-off functions.
The cab station unit generally includes a handle unit and a cab control unit. The handle unit houses the two brake handles and related components. The cab control unit essentially has a computer and a cab interface card. From the handle unit the cab control computer receives via the interface card the signals indicative of the positions of the automatic and independent brake handles. Based on these inputs, the cab control computer calculates commands representative of how much, or even if, the braking effort should be reduced. Along with other information, the cab control computer then conveys these commands to the brake control computer.
The automatic brake handle is the device that the train operator can manipulate to direct the brake equipment to apply and release the brakes on each locomotive and each railcar of the train. The level to which the brake equipment reduces or increases pressure within the brake pipe, and thus the amount of braking power exerted by the train brakes, corresponds to the position of the automatic brake handle. The independent brake handle, in contrast, allows the train operator to apply and release the brakes only on the locomotives of the train.
The independent brake handle may be moved between and placed within any of two positions. When the independent brake handle is moved to its apply position, the brake control computer commands the IAR portion to increase pressure within the IAR pipe. The BC control portion responds pneumatically to this increase in IAR pipe pressure by directing air from the main reservoir to the brake cylinders of the locomotive to apply fully the locomotive brakes. Similarly, when the independent brake handle is moved to its release position, the brake control computer commands the IAR portion to reduce pressure within the IAR pipe. Responding pneumatically to the decrease in IAR pipe pressure, the BC control portion now vents air from the brake cylinders to release the locomotive brakes. Pressure in the IAR pipe and the locomotive brake cylinders reduces and increases in proportion to the position of the independent brake handle.
The automatic brake handle can be moved from and in between a release position at one extreme in which brake pipe pressure is maximum and the brakes are completely released to an emergency position at another extreme in which brake pipe pressure is zero and the brakes are fully applied. When the brakes are applied, reduction of the pressure in the brake pipe is generally controlled from the lead locomotive

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling brake pipe pressure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling brake pipe pressure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling brake pipe pressure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546369

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.