Method of controlling a frequency converter of a reluctance...

Electricity: motive power systems – Synchronous motor systems – Hysteresis or reluctance motor systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S254100, C318S434000, C318S132000

Reexamination Certificate

active

06392379

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of controlling a frequency converter of a switched reluctance machine, which includes current regulation with hysteresis, with which the current switch is clocked with a frequency, which depends on the width of a hysteresis band.
2. Prior Art
Different methods for controlling a frequency converter for a switched reluctance motor are described in Chapter 4, Dynamic Operation, on pp. 53 to 61 of the book “Switched Reluctance Motors and Their Control” by T. J. E. Miller, MAGNA PHYSICS PUBLISHING AND CLARENDON PRESS, OXFORD, 1993. A frequency converter circuit, which provides a switch for the current supply, a commutator switch and two free-running diodes associated with these switches for each phase of the machine, is usually used. The switches usually comprise transistors. One such switch is shown, e.g. in FIG. 4.1 on page 53 of the above-mentioned reference. These switches can be operated in both a hard and also soft interruption mode. In the hard interruption mode both the current switch and the commutator switch of a phase are clocked on and off simultaneously during its current conducting phase. In the soft interruption mode only the current switch is clocked on and off during the current conducting phase while the commutator switch of this phase is turned on during the entire current conducting phase. This soft interruption mode (soft chopping) is preferred for motor operation of a switched reluctance machine, because it causes less noise and electromagnetic interference. The current is thus controlled during the hysteresis-current control described on page 62 of the above-mentioned reference so that it should remain at a given value in a stage between a maximum and a minimum value, at which the provided current switch is clocked on and off accordingly. The clock frequency, with which the supplied current is switched on and off, decreases with increasing inductivity and increasing flux interlinking in the associated phase. The clock frequency is also variable according to the predetermined hysteresis band. This leads to unpleasant and in some cases harmful noise problems.
EP 0 848 491 A2 describes a process and circuit arrangement for operating a switched reluctance motor, in which a hysteresis-current regulation with adjustable hysteresis band is provided. The current switch is clocked. The clocking is kept constant and the width of the hysteresis band is predetermined and changed so that the clock frequency is maintained constant during each occurring current load and current demand. Also the clock frequency is monitored and a frequency error signal is generated, which acts to change the width of the hysteresis band, so that the clock frequency is maintained substantially constant. Noise problems can be largely reduced by this system, since no low frequencies occur. However the clock frequency must generally be measured, which is difficult in practice and is expensive. Furthermore this system is constructed as a true regulating system with the frequency as a feedback signal. However because of the constant clock frequency noise problems occasionally occur.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a simpler and more economical method of controlling a frequency converter circuit of a switched reluctance machine, which also operates according to another principle than the current prior art methods.
It is another object of the present invention to provide a simple and economical method of controlling a frequency converter circuit of a switched reluctance machine, which avoids disadvantageous noise problems.
These objects and others, which will be made more apparent hereinafter, are attained in a method of controlling a frequency converter of a switched reluctance machine, which includes current regulation with hysteresis, and in which a power switch is clocked with a frequency, which depends on the width of the hysteresis band.
According to the invention the width of the hysteresis band is varied according to the rotational speed of the reluctance machine, particularly so that a difference between maximum and minimum threshold values with which the current for the reluctance machine is switched on and off either increases with decreasing rotational speed, decreases with increasing load, or both.
The method of controlling a frequency converter of a switched reluctance machine according to the invention has the advantage that a substantially simpler indirect control of the width of the hysteresis band is provided. The width of the hysteresis band depends on the following parameters: rotation speed, phase current and rotor position. These parameters are necessary for regulating the drive and are thus already present. Moreover the essential advantage of the method is that no additional signal is required and thus the required work and expenses are reduced.
Additional improvements and advantages are provided by the features of preferred embodiments claimed in the appended dependent claims and described in the following description.
In a particularly advantageous embodiment of the method the width of the hysteresis band is varied linearly with rotational speed, load and/or current of the reluctance motor, especially so that the clocking frequency with which the power switch is clocked is maintained substantially constant.
According to a very advantageous preferred embodiment of the method according to the invention for avoiding noise-critical resonance frequencies the method includes making a targeted change in the width of the hysteresis band in order to change the clocking frequency when the rotational speed of the reluctance machine is at a speed value at which the clocking frequency which is substantially constant is in the vicinity of a noise-critical resonance frequency. In this way the noise-critical resonance frequencies may be avoided in an elegant manner, since the targeted change of the clocking frequency is conducted with a suitable change of the width of the hysteresis.
A special embodiment of the method of the invention includes changing the clocking frequency from a higher or lower constant value to a lower or higher constant value during the targeted change so that the width of the hysteresis band is increased or decreased respectively.
In a particularly preferred embodiment of the method the reluctance machine is operated as a reluctance motor and the power switch comprises transistors.
According to an additional advantageous embodiment of the method of the invention the width of the entire hysteresis band is lowered or raised while maintaining its width by a predetermined amount.
According to an additional embodiment of the method of the invention the width of the hysteresis band is changed, especially periodically, according to a relative position of a rotor of the reluctance machine within a revolution of the rotor.
Before describing the preferred embodiment in the drawing, an introduction will be given first regarding the general control of switched reluctance machines. These machines are usually voltage or current regulated. In voltage regulation the reduction of the average voltage over the phase occurs by clocking transistors, which are used as power switches. This clocking occurs with a fixed frequency and variable on/off ratio.
In current regulation the phase current is controlled between two fixed values. The transistor used as the power switch is switched off when the upper threshold is exceeded and switched on which the current falls below the lower threshold. In this way the phase current can be made constant within a hysteresis band, whose bandwidth is given by the difference between both thresholds. The clocking frequency of the power transistors adjusts itself variably according to the speed, the rotor position and the width of the hysteresis band as well as the absolute height of the threshold values. Up to the present usually the width of the hysteresis band is kept constant. However in the method described in EP 0 8

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of controlling a frequency converter of a reluctance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of controlling a frequency converter of a reluctance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of controlling a frequency converter of a reluctance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2876483

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.