Method of control and control structure for the movement...

Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S560000, C318S570000, C318S594000, C318S600000, C318S609000, C318S625000, C318S571000, C700S159000, C700S170000, C700S194000, 36

Reexamination Certificate

active

06677721

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of control and a corresponding control device for controlling the movement of numerically controlled machine tools, robots or the like (“machines”) having a speed control system with a speed controller clock arranged in a drive part, and a higher-level position control system, distributed between a control part and the drive part with values being preset as a reference variable by the control-side part of the position control system in a comparatively slower position control clock.
BACKGROUND OF THE INVENTION
For a complex movement control having a plurality of drives, a central numerical control system (abbreviated hereafter as NC) is often used for coordinating the movement control and outputting setpoint values to autonomously operating drive control systems. Since the computations for the coordinated movement control are generally complex and have to take place for a plurality of axes, the computing time burden of the NC is usually greater than the computing time burden of the individual drive control systems. Therefore, the sampling clock (period) of the drive control system is smaller, and the computing clock (frequency) is generally significantly greater than that of the NC.
Nevertheless, the position controllers for each axis are often computed in the NC in order to process all the information for the coordination of the axis movements together, this relieving the drive of numerous additional tasks such as referencing. If the position controllers are relocated into the drives, although NC computing time is saved and a more even computing time distribution is obtained, the NC no longer has the complete control which is necessary for a coordinated movement.
European Patent EP 0844542 B1 describes a method in which the position controllers are meaningfully distributed between the NC and the drives, the control dynamics of the position controller being determined by a comparatively fast sampling clock of the individual drive. However, this method only has a simple fine interpolator and all the pre-control values are still processed in the comparatively slow position controller clock of the NC. The linear fine interpolator leads for example to torque fluctuations in the position controller clock of the NC, which has adverse effects on the mechanics. Were the pre-control to be in the drive clock, it would bring with an enormous increase in the path-following accuracy.
Conventional approaches with an arrangement of the position controller in the NC lead to low position controller dynamics and path-following accuracy. An alternative arrangement of the position controller in the drive, on the other hand, leads to increased functional range in the drive and an increased need for communication between the drive and NC. Furthermore, the increased functional range in the drive generally has the effect that the sampling clock of the drive must be increased, which is undesirable with regard to the control dynamics. Furthermore, the path-following accuracy is notably inferior with pre-control in the position controller clock.
SUMMARY OF THE INVENTION
The object of the present invention is therefore to achieve an increase in the path-following accuracy for the method of control and/or control devices, by permitting fine interpolation and pre-control to occur in the drive clock. This object is achieved according to the present invention by the above-stated method of control which it is further provided that for pre-control on the drive side a mathematical representation of the path in the position control clock is defined between the drive part and the control part to generate additional checkpoints of the path, the mathematical representation being twice differentiatable for achieving speed information and acceleration information for performing a fine interpolation in the speed controller clock.
A preferred embodiment of the method of control according to the present invention is where the mathematical representation of the path in the position control clock is realized by a polynomial function describing the path.
A further preferred embodiment is where the mathematical representation of the path in the position control clock is realized by a spline function describing the path.
Yet another preferred embodiment of the method of control according to the present invention is where the mathematical representation of the path in the position control clock is realized by coefficients of a polynomial function describing the path. And a further preferred embodiment is where the mathematical representation of the path in the position control clock is realized by coefficients of a spline function describing the path.
It has at the same time been found to be advantageous if setpoint speed values preset by the control-side part of the position control system serve on the drive side for determining a constant component of a setpoint position value polynomial, the variable component of which is determined on the drive side in the speed control clock as a fine position component on the basis of a desired axle speed, preset by a control-side path computation in the position control clock in each case. The average axle speed during the last position control clock, and is fed on the input side to the drive-side part of the position control system and serves for fine position interpolation.
To obtain the advantages of the method described in EP 0 844 542 B1, actual position values acquired in the position control clock for determining the constant component of the setpoint position value polynomial are fed back as the first controlled variable on the input side to the control-side part of the position control system. The difference from actual position values acquired in the speed control clock and actual position values acquired in the position control clock is additionally fed back as the second controlled variable on the input side to the drive-side part of the position control system. The logical combination of the output values of the two higher-level position control parts is supplied to the speed control system as setpoint speed values.
The advantages which are realized are the increased dynamics of a position control loop, without the computing effort required for this in the drive or on the part of the numerical control system being increased considerably; there continues to be a central awareness of all the states of the axes or groups of axes; the operations which are less important in terms of control technology continue to take place in the NC which is consequently not additionally burdened. Added to these is the fact that actual position values can be processed incrementally in a signal processor, whereby no other required floating-point numbers have to be processed. This brings with it a considerable gain in computing time.
In a preferred embodiment the drive-side part of the position control system is operated with the same proportional gain as the control-side part of the position control system. It is also preferred to determine the setpoint position value polynomial on the drive side from polynomial segments which are in each case valid for the duration of a position control clock, in particular as a spline function. Further, it is also preferred if the setpoint position value polynomial is determined on the drive side in such a way that the speed at the polynomial transitions is constant. With the fine position component of the setpoint position value polynomial, the setpoint position values in the drive then undergo fine interpolation in the speed controller clock.
If a polynomial of the third degree or higher is determined as the setpoint position value polynomial on the drive side, a speed pre-control can be achieved in the speed controller clock by differentiating the variable component of the setpoint position value polynomial for determining a speed pre-control value, which is fed on the input side to the speed control system. In this case it is recommended to adapt a control-side setpoint position value and th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of control and control structure for the movement... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of control and control structure for the movement..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of control and control structure for the movement... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246869

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.