Method of configuring blood circuit for medical application...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S090000, C604S004010, C210S143000

Reexamination Certificate

active

06629005

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of configuring a blood circuit for medical application. In more detail, it relates to a method of configuring a desired blood circuit for medical application on a computer by systematizing many components constituting the blood circuit into a plurality of unit sections and selecting a component in each unit section.
BACKGROUND OF THE INVENTION
A blood circuit for medical application includes a blood circuit used for, for example, a dialysis. The dialysis requires not only a dialyzer but also a blood circuit for connecting a patient to the dialyzer. Conventionally, this blood circuit for dialysis varies in specifications depending upon users, i.e., hospitals, doctors, or laboratory technicians. That is, most of the conventional blood circuits are customized for individual users and do not have general versatility. Actually, a large number of different kinds of blood circuit systems are employed.
Since such blood circuits are customized for individual users, the cost is high and it takes a long time to deliver the products to users. In other words, it takes a long time to configure a circuit by repeating trials and errors, which may lead to increased cost. A more important problem is that a dialysis technique is dependent on the experience of in the individual person in charge such as a doctor, a laboratory technician, etc., and a method of connecting each machine to the circuit system and a method of using the circuit system are not systematized. Therefore, a circuit system may be changed subjectively by the individual person in charge. Furthermore, compatibility between different products is not established. Thus, there are problems in safety as a product used directly on the human body. Examples of such problems are a safety problem, for example, failure in fitting of a tool such as an indwelling needle, etc. that is connected to the circuit, and a lack of versatility, that is, because of a difference in length even on the order of only several centimeters, such an apparatus has to be produced based on a different standard.
On the other hand, with the stability of the performance of dialyzers in recent years, the safety of blood circuits, ease of using, and economical efficiency are becoming problems. In order to solve such problems, it is urgently demanded to standardize various components constituting a blood circuit and to provide the stability in quality, convenience, and rapidity in configuring a circuit.
With respect to the demand, JP63 (1988)-95063A proposes that each component is integrated into one piece of a packaged system. However, this proposal has disadvantages in that equipment being connected to the circuit system has less versatility, and that the system is not used conveniently.
Furthermore, there are about 3400 types of blood circuits only in Japan. Conventionally, problems with respect to the conveniences in using, for example, length, location of parts, etc., are adjusted by trial and error and samples are made and attached to a dialyzer. In other words, the adjustments have been carried out by using a real machine.
In order to make samples, it is necessary to make a standard drawing and often calculate the amount of filled blood or length based on the standard drawing. If defects are detected in the test by the use of real machines, there is a bother to start again from the formation of standard drawings.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of easily configuring a blood circuit for medical applications, which is capable of configuring a blood circuit in accordance with the applications.
It is another object of the present invention to provide a method of configuring a blood circuit for medical applications, which is capable of checking efficiently whether the circuit is fit for a desired specification or not, or capable of efficiently correcting the blood circuit configuration without actually assembling a sample, and an apparatus used for the configuring method.
In the method of configuring the blood circuit for medical application of the present invention, a blood circuit system is formed by dividing a blood circuit into a plurality of sections and preparing a plurality of selectable unit components for at least one unit section. By selecting at least one unit component from each unit section and combining the selected unit components, an individual blood circuit is configured. For configuration, the method includes using a blood circuit system database in which data with respect to the unit sections and the unit components contained in the blood circuit system are stored, inputting one of the unit sections on a basis of the blood circuit system database as an assigned unit section to the computer, extracting the data of a plurality of the corresponding unit components from the blood circuit system database by the computer based on the input assigned unit section and displaying the extracted data on a display, and inputting one component selected from the displayed unit components as a selected unit component to the computer. After carrying out the above-mentioned procedures in the necessary unit section, by the use of the blood circuit system database, an assembly drawing showing an entire configuration of the blood circuit obtained by combining the input selected unit components and at least one of a full length of the blood circuit or an amount of filled blood are displayed on a display. Then, a command for changing the selection of the unit components or a command for determining the configuration of the blood circuit is input to the computer.
According to this method, by only selecting the unit component in accordance with the unit section, it is possible to configure the blood circuit in accordance with the applications easily. Moreover, without constructing a real sample of the blood circuit, it is possible to check whether the circuit is fit for the desired specification or not. Furthermore, in a case where the sample is not fit for the desired specification, only by changing the selection of the unit components, it is possible to check whether the reconfigured sample is fit for the desired specification promptly. Since the blood circuit system can be produced by dividing a plurality of reasonable unit sections from the viewpoint of techniques in dialysis, it is possible to clarify individual features of each unit component. Therefore, it is useful to select unit components appropriately in accordance with the applications.
The above-mentioned method of configuring a blood circuit for medical application further includes, after the procedure of inputting the selected unit components to the computer, selectively either returning to the procedure for inputting the assigned unit section or inputting a selection terminating command for terminating the input of the selected unit components and going to the following procedures; when the selection terminating command is input, if there is any unit section with no selected unit component input, returning to the procedure of inputting the assigned unit section; and if the selected unit component has been input in all the unit sections, going to the following procedures, and if the selection of the unit component is to be changed, returning to the procedures of inputting the assigned unit section.
In the above-mentioned method, if the command of determining the configuration of the blood circuit is input, based on the blood circuit system database, the price of the blood circuit obtained by combining each selected unit component is displayed on the display.
Furthermore, it also is desirable that an existing standard database in which a plurality of existing standards are stored is used, the existing standard being a plurality of the combination of unit components constituting an existing specific blood circuit, and when an assembly drawing, a full length of the blood circuit and an amount of filled blood are displayed, the existing standard being analogous to the configuration of the displ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of configuring blood circuit for medical application... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of configuring blood circuit for medical application..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of configuring blood circuit for medical application... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3089778

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.