Method of closing a cell containment device with a wet seal

Chemistry: molecular biology and microbiology – Apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093400, C424S093700, C424S424000, C435S182000, C435S243000, C435S325000, C435S293100, C604S890100

Reexamination Certificate

active

06617151

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of implantable devices and more particularly to devices that are wet or heat sealed.
2. Background Information
Within the field of implantable devices, it is known to provide permeable membrane structures for implantation, the structures configured to hold drug formulations or cellular suspensions. A number of techniques have been proposed to form those structures and seal the structures. In the majority of those known techniques, the device is manufactured without the cellular suspension or drug formulation. Subsequent loading of the cellular suspension or drug formulation may occur outside a host or after the device is implanted into the host.
When a suitable cell suspension or drug formulation is loaded into the device, it is typical and frequently desireable for the permeable membrane to become wet with fluid. Given the nature of the membranes, it is known that sealing a wet membrane can be difficult or impossible. This is because known glues and solvents that are appropriate for membranes in a dry state are frequently not compatible with a wet membrane, or are toxic to cell suspensions loaded into the membrane structure. To offset this difficulty, different dry and wet seal techniques have been proposed.
In one technique, such as disclosed in U.S. Pat. No. 5,902,745 to Butler et al., the device includes a permeable tubular membrane, which is sealed with a mechanical seal after loading the device with an appropriate cell suspension. In this technique, the membrane is wet when the seal is formed, but seal integrity relies on the quality of the mechanical seal. With implantable devices, the mechanical seal dimensions are small and can be difficult to reliably manipulate. In addition, because the loading and sealing operations can be distinct, there is an opportunity for contamination of the device exterior with cells from the cell suspension after the loading operation.
In another technique, such as disclosed in U.S. Pat. Nos. 5,653,687; 5,653,688; 5,713,887; 5,738,673 and 5,932,460 issued to Mills et al, a dry seal is formed after the device is loaded. However, the loading and sealing steps are distinct and the device is open to the loading environment after loading and before the device is sealed. For some of these seals, the seal depends on mechanical aspects of the seal. Some of the disclosed seal techniques require a solvent based seal. The solvents described may be toxic to the cell suspension, however. In one particular embodiment of the seal, a portion of the device is broken off and removed after loading and prior to sealing. This action presents a strong possibility of contaminating the loading environment. This contamination can be subsequently transferred to the exterior of the device, or to other devices or apparatus.
In another technique, such as disclosed in U.S. Pat. Nos. 5,545,223 and 5,549,675 issued to Neuenfeldt et al., the apparatus or device is first implanted in a host and then loaded with a cellular suspension in the host environment. In addition to problems that are described with wet sealing of the device, this technique is performed through an incision or injection port following implantation in the host, thereby exposing the device and the host to a risk of contamination. The technique of Neuenfeldt et al. also requires a larger device to accommodate the distance between the cell suspension and the seal. This larger device also produces greater host trauma during implantation.
In some of the known techniques, the device or apparatus is loaded in an area that is remote from the host. In these methods, the loading process or apparatus provides opportunities for contamination from drug formulations or cell suspensions between the loading and the sealing steps.
As described, the methods available do not provide a secure and reliable closure system, that reduces the possibility of contamination during loading. In addition, the methods available do not provide a method to reliably seal a device after the membrane is wet. Systems and methods to address these and other deficiencies are needed.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides a method of closing a containment device that comprises wetting at least a portion of a permeable polymeric membrane of the containment device with a liquid and applying heat to at least a portion of a wetted thermoplastic polymer in association with the membrane to create a closure. Such a closure is referred to herein as a “wet seal.” In this “wet sealing” process, the thermoplastic polymer melts at a lower temperature than the polymeric membrane. Once melted, the thermoplastic polymer integrates with the polymeric membrane and flows along surfaces and into available interstices of the membrane. Through passageways become filled with the melted polymer, thereby blocking fluid communication in the polymeric membrane in the region of the closure. When the thermoplastic polymer cools below its melt temperature, a closure is formed in the device. The closure is cell-tight and often liquid-tight. The portion of the device having a closure formed with a wet seal delineates a cell-impermeable region of the device.
The application of heat may be accompanied by slight pressure and a heat sink may be applied to limit heat transfer beyond the closure region to the permeable membrane. After forming the closure, the method may include pressure checking the closure integrity. The device may include additional closures that are formed by wet or dry sealing techniques.
In one aspect, the present invention provides a method of closing a containment device that comprises wetting a porous expanded polytetrafluoroethylene (ePTFE) membrane of the containment device with a liquid, and applying heat to a portion of the membrane in communication with a thermoplastic polymer, such as fluorinated ethylene propylene (FEP), to create a closure. The closure is formed by melting and fusing of the polymer to itself and the membrane in the presence of the liquid.
In one aspect, the present invention provides a method of closing a containment device comprising wetting a permeable membrane of the containment device with a liquid, wetting a thermoplastic polymer region of the device with the liquid and applying heat directly to the thermoplastic polymer region to create a closure. In this aspect, the thermoplastic polymer region is joined to the permeable membrane before wet sealing the containment device.
In one aspect, the present invention provides a method of closing a containment device that comprises applying sufficient heat to a portion of a permeable membrane in association with a thermoplastic polymer to melt and flow the thermoplastic polymer, followed by twisting the membrane/thermoplastic polymer combination in the region of the heating to form a closure. The membrane/thermoplastic polymer combination is also elongated while heating or twisting the materials. After heating, twisting, and elongation a separation region is formed and the membrane is cut in the separation region.
In one aspect, the present invention provides a containment device comprising a membrane, a polymer in communication with the membrane, and a closure. The closure is created by applying heat to a portion of the membrane and a portion of the polymer after wetting the membrane with a liquid.
In one aspect, the present invention provides a containment device comprising a membrane, a polymer region joined to the membrane and a closure. The closure is created by applying heat directly to the polymer region after wetting the membrane and the polymer region with a liquid.
In one aspect, the present invention provides a containment device comprising a membrane and a closure. The closure is created by applying heat to a portion of the membrane and twisting the membrane in the region of the heating.
In one aspect, the present invention provides a method of forming a containment device. The method comprises forming a containment region that includes a membrane, formi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of closing a cell containment device with a wet seal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of closing a cell containment device with a wet seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of closing a cell containment device with a wet seal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.