Fluent material handling – with receiver or receiver coacting mea – Processes – Gas or variation of gaseous condition in receiver
Reexamination Certificate
2000-07-18
2002-07-16
Maust, Timothy L. (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Processes
Gas or variation of gaseous condition in receiver
C141S059000, C141S083000, C141S094000, C141S196000, C141S290000
Reexamination Certificate
active
06418981
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of checking that a system recovering vapour emitted in a liquid dispensing installation, in particular when dispensing fuel to the interior of a motor vehicle tank, is operating correctly.
BACKGROUND OF THE INVENTION
Fuel dispensing installations conventionally comprise a fuel storage tank, a pipe for dispensing liquid incorporating a delivery pump enabling the fuel to be circulated between the storage tank and a dispensing gun at a liquid delivery rate QL, as well as counting means connected into the liquid dispensing pipe and fitted with a liquid measuring unit linked to a pulse generator or coder enabling a computer to ascertain the volume and price of the fuel dispensed, which then appear in plain text on a display.
For reasons of safety (risk of explosion) and environmental protection, installations of this type ate generally fitted with a system for recovering vapour emitted when the tank is being filled; such a system comprises a pipe for recovering vapour incorporating a recovery pump which enables the vapour to be circulated between the dispenser gun and the storage tank at a vapour delivery rate QV when the tank is being filled.
In order for a system of this type to operate efficiently, the delivery rate of the vapour QV at any instant must be approximately the same as the liquid delivery rate QL.
In order to achieve this performance, the recovery system is fitted with control means which are able to maintain this balance.
In smaller installations having only one or two dispenser guns, these control means are provided in the form of simple means whereby the vapour delivery rate QV is calibrated beforehand on the maximum liquid delivery rate QLmax, which is generally in the order of 40 litres per minute.
In larger, more sophisticated installations, the control teams consist of an electronic control unit fitted with a microprocessor, connected to counting means which supply the value of the liquid delivery rate QL instantaneously and co-operate either with the recovery pump if it is of the variable delivery type and hence operates a variable delivery rate, or with an electronically operated control valve connected into the vapour recovery pipe if the recovery pump operates at a fixed rate. In a system of this type, the values governing opening of the electronically operated control valve or the speed of the recovery pump corresponding to a vapour delivery rate QV are stored in the memory of the microprocessor during the initial calibration process.
Vapour recovery system of the type outlined above are generally efficient immediately after they have been calibrated. After a period in service operation, however, the results become leas certain, not to say totally erratic.
This situation is generally attributable to ageing of the equipment: wear on the pumps, clogged pipelines, stretching in the belts leading to a reduction in pumping rates, blocked pumps, etc.
Currently used installations are not fitted with units to detect when operation is poor and incapable of maintaining equality between the liquid delivery rate QL and the vapour delivery rate QV and the period between two service inspections on the installation may be very long (one to three years), which represents a source of pollution in particular and is therefore harmful to the air quality.
It should be pointed out that an earlier document, U.S. Pat. No. 5,332,008, discloses (column 4, lines 13-18) a fuel dispensing installation incorporating a vapour recovery system which is fitted with a sensor detecting operation of the recovery pump, which means that the speed normally expected of this pump can be checked and distribution disabled in the event of an anomaly.
However, this detection system is not always able to react if the pump is exhibiting mechanical wear (changes in its characteristics), which may render it incapable of attaining a vapour delivery rate QV equal to the liquid delivery rate QL.
The same applies if the suction or delivery pipes of the recovery pump become partially or totally blocked (due to encrustation or by accidental means); if an installation is fitted with an electronically operated control valve, its timing will initially have been programmed after calibration, thereby preventing an adequate delivery rate from being achieved and the vapour delivery rate QV is always lower than the liquid delivery rate QL and may even fall to zero under extreme circumstances unless the detection system disclosed in this earlier publication triggers an alarm to indicate that there is a malfunction.
In document U.S. Pat. No. 5,857,500, it was also suggested that automatic checks be made on the recovery pump for wear, when not dispensing fuel, by means of a command issued to electronically controlled valves upstream and downstream of the pump to be checked and to do so by providing two pressure sensors to measure the active or negative pressures attained when the pump is rotating. The pressures measured during an opening/closing cycle of the electronically controlled valves can be compared with the measurements taken when the system was installed in order to determine the extent of wear on the recovery pump.
According to this earlier document, another test was to measure the drop in pressure on the auction side what dispensing In order to evaluate the degree of encrustation or blockage at the level of the vapour recovery pipe.
However, these are nothing more than pressure measurements which depend both on an instantaneous delivery rate and resistance in the line in which changes are evaluated as compared with the initial situation as recorded on the date of installation.
SUMMARY OF THE INVENTION
The objective of the present invention in to remedy the above-mentioned disadvantages by proposing a method of checking that the system used to recover vapour in a liquid dispensing installation, in particular when dispensing fuel to the interior of a motor vehicle tank, is operating correctly, providing a reliable indication of any malfunction in the vapour recovery system, regardless of the source of this malfunction
Accordingly, the method proposed by the invention is characterised in that:
the vapour delivery rate QV is constantly detected by detection means,
the value of the vapour delivery rate QV thus detected is transmitted to comparison means which compare it with a value of the liquid delivery rate QL and
if the result of this comparison is outside a predetermined range, which may or may not be adjustable, an alarm is triggered in order to indicate a malfunction.
In a first embodiment of the invention adapted to a vapour recovery systen having an electronic control unit co-operating with an electronically operated control valve or a variable delivery pump, the value of the liquid delivery rate QL determined by the counting means is constantly transmitted to the comparison means and it is compared with the value of the vapour delivery rate QV detected by the detection means.
It should be pointed out that in the case of this embodiment, the vapour delivery rate QV is compared with the liquid delivery race QL by the electronic control unit if this function has been programmed in the microprocessor incorporated therein, although this is not always the case with existing systems which would have to be modified accordingly.
In addition, if the microprocessor of the electronic control unit is able to interact with the computer of the counting means, the alarm could also be transmitted via this computer to the service station manager or remotely transmitted to a maintenance company which could then respond more rapidly.
In a second embodiment of the invention adapted to a simplified recovery system which does not have an electronic control unit and in which the control means correspond co a prior calibration of the vapour delivery rate QV to the maximum liquid delivery rate QLmax, the maximum value QLmax of the liquid delivery rate QL in stored in the comparison means and the value of the vapour delivery rate QV detested by the detection means in
Fournier Jacques
Nitecki Jean-Pierre
Drinker Biddle & Reath LLP
Maust Timothy L.
Tokheim Services France
LandOfFree
Method of checking that a system for recovering vapour... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of checking that a system for recovering vapour..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of checking that a system for recovering vapour... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2876159