Method of applying nanoparticles

Coating processes – Direct application of electrical – magnetic – wave – or... – Electrostatic charge – field – or force utilized

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S469000

Reexamination Certificate

active

06645569

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to coating compositions, methods and articles of manufacture comprising a nanoparticle system or employing same to impart surface modifying benefits for all types of soft surfaces, and in some cases, hard surfaces.
BACKGROUND OF THE INVENTION
Inorganic particulates, such as, clays, silicates, and alumina have been widely used in combination with adjunct detergent and laundry compounds to impart some form of antistatic control and/or fabric softening benefit.
One approach taken in the prior art discloses anti-static benefits using inorganic particulates. Patents describing such uses include U.S. Pat. No. 3,594,212 and U.S. Pat. No. 3,862,058.
The benefit of fabric softening is widely disclosed in the prior art. Patents describing such uses include: U.S. Pat. No. 3,886,075; U.S. Pat. No. 4,806,253; U.S. Pat. No. 4,885,101; U.S. Pat. No. 5,004,556; U.S. Pat. No. 5,019,292; U.S. Pat. No. 5,209,857; and U.S. Pat. No. 5,721,205.
It is generally well known that inorganic particulates can be used in the cleaning, freshening and deodorizing of certain types of textiles, such as carpets. See, for example, U.S. Pat. No. 3,716,488 (Stevens J & Co); U.S. Pat. No. 3,736,259 (Colgate Pomalive); U.S. Pat. No. 4,035,148 (P&G); U.S. Pat. No. 4,090,974 (FMC); U.S. Pat. No. 4,566,980 (Creative Products); U.S. Pat. No. 4,581,385. and U.S. Pat. No. 4,873,000 (Sterling Drug). In practice, the clays used in these cleaning compositions have particle sizes between 10-60 &mgr;m (10,000-60,000 nanometers).
Other patents and patent publications include: U.S. Pat. No. 3,936,537 (P&G 1976); U.S. Pat. No. 3,954,632 (P&G 1976); U.S. Pat. No. 3,962,100 (P&G 1976); U.S. Pat. No. 3,989,631 (P&G 1976); U.S. Pat. No. 4,178,254 (P&G 1979); U.S. Pat. No. 4,844,824 (P&G 1989); U.S. Pat. No. 5,209,857 (Lever 1993); JP6172657 (Nippon Shirika 1994); EP 753567 (P&G 1997); WO 01/32820 (Henkel 2001); WO 01/44425 (Lever 2001); WO 01/44561 (Lever 2001); and WO 01/83662 (Henkel 2001).
It is apparent that there is a need for methods for improving the properties of cloth or fabric materials containing various natural, man-made, and/or synthetic fibers. The hydrophobic nature of certain types of fibers, such as synthetic polyester or nylon, or the hydrophobic modification of fabrics due to “aging” of the material (e.g., cotton), give rise to a number of soft surface performance issues including: greater difficulty in removing hydrophobic soils (cleaning), greater attraction of soils from wash solutions (whiteness/redeposition/stain resistance), greater retention of body soils (malodor), greater difficulty in color fading (color control) and lower ability to transport moisture through fabric (wettability and comfort). There is also a continuing need that these modified surface benefits be made longer lasting or semi-permanent in order to be more responsive to consumer applications.
SUMMARY OF THE INVENTION
The present invention relates to compositions, methods, and articles of manufacture comprising a nanoparticle system or employing the same that provide to impart surface modifying benefits for all types of soft surfaces, and in some cases, hard surfaces. In some embodiments, these benefits can be made long lasting or semi-permanent. These multi-use benefits may include one or more of the following: improved surface cleaning, wettability, strike-through, comfort, stain resistance, soil removal, malodor control, modification of surface friction, reduced damage to abrasion, and color enhancement properties relative to surfaces unmodified with such nanoparticle systems. There are numerous, non-limiting embodiments of the invention. All embodiments, even if they are only described as being “embodiments” of the invention, are intended to be non-limiting (that is, there may be other embodiments in addition to these), unless they are expressly described herein as limiting the scope of the invention.
In one non-limiting embodiment of the present invention there is provided a soft surface coating composition comprising: (a) an effective amount of nanoparticles; (b) optionally a surfactant; (c) optionally having associated with said nanoparticles one or more charged functionalized molecules exhibiting properties selected from the group consisting of hydrophilic, hydrophobic and mixtures thereof; (d) optionally one or more adjunct ingredients; and (e) a suitable carrier medium.
In another non-limiting embodiment, there is provided a method of using a coating composition for modifying a soft surface comprising the steps of: (a) applying the coating composition to the soft surface; and (b) allowing the coating composition to dry on the soft surface to form a coating on the soft surface; and (c) optionally repeating any of steps (a) and (b) as needed.
In another non-limiting embodiment, there is provided an article of manufacture comprising an applicator such as a spray dispenser, an immersion container, a hose spray dispenser attachment, a fabric and/or a sponge wherein the applicator contains (a) a coating composition according to the present invention, wherein the coating composition is in a physical form selected from the group consisting of liquid, liquid concentrate, gel, powder, tablet, granule and mixtures thereof; and (b) optionally a source of deionized water; (c) optionally a source of tap water, and (d) optionally a set of instructions in association with the applicator comprising an instruction to dispense the coating composition from said applicator onto the soft surface to modify the surface.
The use of a surface coating in modifying soft surfaces must not leave behind detectable residues (e.g., visible or odorous) that would be otherwise unacceptable to the consumer. The advantage of nanoparticle coatings over other types of surface modifying agents (e.g. film forming polymers) is that they can provide films on the surface that are essentially invisible. The proper nanoparticle coating composition may provide a transparent coating or the coating composition may also be selected to provide a unique color enhancement of textile surfaces. Color enhancement provides a rejuvenation of the color of faded or worn garments and textiles and/or the prevention of color loss. Alternatively, nanoparticles can be combined with delivery agents such as hydrophilic surface polymers to drive nanoparticle deposition and improve the longevity of the surface modification.
Substrates treated with the benefit agent materials (i.e., the nanoparticle systems) of the present invention, in various embodiments, may be made to exhibit a greater improvement in cleaning, wettability, strike-through (transport of moisture/liquids through such substrates), comfort, stain resistance, soil removal, malodor control, modification of surface friction, reduced damage to abrasion, and color enhancement properties compared to substrates not treated with such benefit agent materials.
These and other embodiments, objects, features and advantages will be clear from the following detailed description, examples and appended claims.
All percentages, ratios and proportions herein are on a weight basis based on a neat product unless otherwise indicated.


REFERENCES:
patent: 2695002 (1954-11-01), Miller
patent: 2989241 (1961-06-01), Badger
patent: 3594212 (1971-07-01), Ditsch
patent: 3716488 (1973-02-01), Kolsky et al.
patent: 3736259 (1973-05-01), Buck et al.
patent: 3862058 (1975-01-01), Nirschl et al.
patent: 3886075 (1975-05-01), Bernardino
patent: 3954632 (1976-05-01), Gloss
patent: 3962100 (1976-06-01), Murphy et al.
patent: 3989631 (1976-11-01), Marsan
patent: 4035148 (1977-07-01), Metzger et al.
patent: 4090974 (1978-05-01), Morganson
patent: 4178254 (1979-12-01), Leikhim et al.
patent: 4566980 (1986-01-01), Smith
patent: 4581385 (1986-04-01), Smith et al.
patent: 4752034 (1988-06-01), Kuhn et al.
patent: 4806253 (1989-02-01), Burckett St. Laurent et al.
patent: 4844824 (1989-07-01), Mermelstein et al.
patent: 4873000 (1989-10-01), Weller
patent: 4885101 (1989-12-01), Tai
patent: 4962885 (1990-10-01), Coffee
paten

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of applying nanoparticles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of applying nanoparticles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of applying nanoparticles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184938

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.