Method of applying an adhesive composition over a bioactive...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Web – sheet or filament bases; compositions of bandages; or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S443000, C424S445000, C424S078060

Reexamination Certificate

active

06455064

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The invention relates to the use of monomer and polymer compositions as biomedical adhesives and sealants, and particularly to their use in conjunction with bioactive materials.
2. Description of Related Art
Products in primary use for wound closure are surgical sutures and staples. Sutures are recognized to provide adequate wound support. However, sutures cause additional trauma to the wound site (by reason of the need for the needle and suture to pass through tissue and the need to anesthetize the wound area via needle puncture) and are time-consuming to place, and, at skin level, can cause unattractive wound closure marks. Surgical staples have been developed to speed wound apposition and provide improved cosmetic results. However, surgical staples also impose additional wound trauma and require the use of ancillary and often expensive devices for positioning and applying the staples. Both sutures and staples are especially problematic in pediatric cases where the patient may have a strong fear response and refuse to cooperate with their placement, and in geriatric cases where the skin tissue is weaker and prone to tearing.
As an alternate to surgical sutures and staples, adhesives have been used in wound closure. Similarly, adhesives have been proposed for use in wound covering and protection in such topical applications as minor cuts, scrapes, irritations, compromised skin, surface lacerations, abrasions, burns, stomatitis, and other open surface wounds. One group of such adhesives is the 1,1-disubstituted ethylene monomers, such as the monomeric forms of &agr;-cyanoacrylates.
For wound closure and covering using adhesives, mixtures of cyanoacrylate adhesives and medicaments have been developed. For example, U.S. Pat. No. 5,684,042 to Greff et al. discloses a cyanoacrylate composition comprising an antimicrobially-effective amount of an iodine-containing antimicrobial agent. The iodine-containing antimicrobial agent is dispersible in the cyanoacrylate composition and does not cause premature polymerization of the cyanoacrylate adhesive (i.e., does not initiate polymerization).
U.S. Pat. No. 3,483,870 to Coover, et al. discloses the use of methyl &agr;-cyanoacrylate as a bone cement. The &agr;-cyanoacrylate may be blended with antibiotics so long as the antibiotics do not cause early polymerization (i.e., do not act as polymerization initiators) or cause adverse effects on the healing process.
Another method for treating or preventing infections associated with wounding using adhesives involves layering a cyanoacrylate over a medicament on a wound site. For example, U.S. Pat. No. 5,580,565 to Tighe, et al. discloses the use of a topical &agr;-cyanoacrylate tissue adhesive to form a protective barrier over intact or broken skin to allow healing of the skin to occur. Polymerization of the &agr;-cyanoacrylate adhesive is initiated by contact with skin moisture and tissue protein. Tighe et al. also disclose the use of &agr;-cyanoacrylate adhesives as a protective layer over medicaments. The only medicament exemplified by Tighe et al. is cortisone, which does not initiate polymerization of cyanoacrylate monomer compositions.
Others have also disclosed the use of cyanoacrylate adhesives as coverings for medicaments. For example, Beasley et al. disclose application of antibiotics, such as vancomycin powder or tetracycline, to a wound, followed by covering of the wound with isobutyl cyanoacrylate. This type of treatment is disclosed as showing promise for treatment of bacterially infected tissues. (Beasley, J. D. et al.,
Effect of Antibiotics and Chemical Adhesives on Infected Wounds
, Mil. Med. 136(6):566-569, 1971). However, neither of these antibiotics act to initiate polymerization of the cyanoacrylate.
The use of cyanoacrylate adhesives to cover bioactive agents is also disclosed in: Miles et al., Oral Surgery, Oral Medicine, Oral Pathology, Vol. 75, No. 3,397-402 (using triamcinolone acetonide (Kenalog) or chlorhexidine digluconate (Peridex) as the bioactive agent); and Kaufman, R. S., The Laryngoscope, 1974, 793-804 (using dexamethasone sodium phosphate (Decadron) as the bioactive agent).
U.S. Pat. No. 4,669,491 to Weisberg et al. discloses the use of biocides covered by protective acrylic artificial nails. The biocides may be acidic or phenolic, but are preferably selected so as not to affect the cure rate or the bond strength of the glue layer. They include thymol, chlorothymol, benzoic acid, p-hydroxybenzoate alkyl esters, 4- and 6-phenyl-2-chlorophenyl, carvocrol, hexachlorophene, nitroforans, allicin, 2-phenylphenol, boric acid, mercurials, and such antibiotics as Bacitracin and Griseofulvin, quaternary ammonium halides such as n-alkyldirnethylbenzylammonium chloride, cetyl pyridinium bromide, 5-methyl-2-isopropyl-cyclohexanol, 2-bornanone, cineole, safrole, bornyl chloride, 2-phenoxyethanol, benzylalcohol and ethanol. The biocides are applied to human fingernails, then covered by solutions comprising cyanoacrylate adhesive. The biocides are applied to the natural fingernails in a solution, and the solution is allowed to dry, leaving the active biocides on the nails. The biocide-treated fingernails are roughened with an abrasive, then coated with a monomeric cyanoacrylate solution to form the artificial fingernails. The cyanoacrylate monomers are polymerized by the addition of a polymethacrylate ester composition containing a benzoyl peroxide catalyst. There is no suggestion of selecting the monomers and biocides such that the biocides affect polymerization.
U.S. Pat. Nos. 4,764,377 and 4,892,736 to Goodson disclose the use of a therapeutic agent and a cyanoacrylate adhesive for treatment of periodontal diseases. The therapeutic agent is placed within the periodontal pocket, then covered by a mechanical maintenance system (which may be in the form of a layer of an adhesive film, such as n-butylcyanoacrylate), which holds the therapeutic agent in the periodontal pocket, allowing the therapeutic agent to be administered to the periodontal site. Goodson and co-workers also disclose this type of system in, for example, “J. Periodont. Res”, 1990, Vol. 25, 243-249, and “Recent Advances in Periodontology”, Vol. 11,61-68. The therapeutic agents include antibacterial agents such as iodine, sulfonamides, mercurials, bisbiguanides, or phenolics; antibiotics such as tetracycline, neomycin, kanamycin, metranidazole, or canamycin; anti-inflammatory agents such as indomethacin, eugenol, or hydrocortisone; immunosuppressive or stimulatory agents such as methotrexate or levamasole; dentinal desensitizing agents such as strontium chloride or sodium fluoride; odor masking agents such as peppermint oil or chlorophyll; immune reagents such as immunoglobulin or antigens; local anesthetic agents such as lidocaine or benzocaine; nutritional agents such as amino acids, essential fats, and vitamin C; antioxidants such as alphatocopherol and butylated hydroxy toluene; lipopolysaccharide complexing agents such as polymyxin; or peroxides such as urea peroxide. There is no suggestion of selecting the monomers and biocides such that the biocides affect polymerization.
U.S. Pat. Nos. 5,514,371 and 5,624,669 to Leung, et al. disclose the addition of a therapeutic agent in a cyanoacrylate composition. The cyanoacrylate adhesive forms a matrix for the therapeutic agent, with the therapeutic agent being released in vivo over time from the matrix during biodegradation of the polymer. The therapeutic agent is not used as a polymerization initiator or a polymerization rate modifier.
U.S. Pat. No. 4,940,579 to Randen discloses a composition comprising a medicament and a cyanoacrylate adhesive. The composition is used to deliver medicaments to non-mucosal areas of mammal bodies. However, Randen does not disclose the use of medicaments as polymerization initiators and/or rate accelerators.
U.S. Pat. No. 5,254,132 to Barley et al. discloses the use of cyanoacrylate adhesives in conjunction with antibiotics. The antibiotics are added to the cyanoacrylate compos

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of applying an adhesive composition over a bioactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of applying an adhesive composition over a bioactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of applying an adhesive composition over a bioactive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2816217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.