Method of and unit for displaying an image in sub-fields

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S077000

Reexamination Certificate

active

06525702

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method of displaying an image on a display device in a plurality of sub-fields, each sub-field for outputting a respective illumination level by the display device, wherein the image includes a plurality of pixels each having a respective intensity value from a set of intensity values and wherein at least one of these intensity values can be generated by a plurality of combinations of the sub-fields, the method comprising the steps of selecting, for a particular pixel, a combination of sub-fields in conformance with its intensity value, and sending a representation of the selected combination to the display device for displaying the particular pixel.
The invention further relates to an image display unit for displaying an image on a display device in a plurality of sub-fields, each sub-field for outputting a respective illumination level by the display device, wherein the image includes a plurality of pixels each having a respective intensity value from a set of intensity values and wherein at least one of these intensity values is generated by a plurality of combinations of the sub-fields, the image display unit comprising selection means for selecting for a particular pixel, a combination of sub-fields in conformance with its intensity value, and sending means for sending a representation of the selected combination to the display device for displaying the particular pixel.
The invention further relates to an image display apparatus comprising such an image display unit.
2. Description of the Related Art
U.S. Pat. No. 5,841,413 describes a plasma display panel driven in a plurality of sub-fields. A plasma display panel is made up of a number of cells that can be switched on and switched off. A cell corresponds with a pixel (picture element) of the image that is to be displayed on the panel. In the operation of the plasma display panel, three phases can be distinguished. The first phase is the erasure phase in which the memories of all cells of the panel are erased. The second phase is the addressing phase, in which the cells of the panel that are to be switched on are conditioned by setting appropriate voltages on their electrodes. The third phase is the sustain phase, in which sustain pulses are applied to the cells which cause the addressed cells to emit light for the duration of the sustain phase. The plasma display panel only emits light during this sustain phase. The three phases together are called a sub-field period or simply a sub-field. A single image, or frame, is displayed on the panel in a number of successive sub-field periods. A cell may be switched on for one or more of the sub-field periods. The light emitted by a cell in the sub-field periods in which it was switched on, is integrated in the eye of the viewer who perceives a corresponding intensity for that cell. In a particular sub-field period, the sustain phase is maintained for a particular time resulting in a particular illumination level of the activated cells. Typically, different sub-fields have a different duration of their sustain phase. A sub-field is given a coefficient of weight to express its contribution to the light emitted by the panel during the whole frame period. An example is a plasma display panel with 6 sub-fields having coefficients of weight of 1, 2, 4, 8, 16 and 32, respectively. By selecting the appropriate sub-fields in which a cell is switched on, 64 different intensity levels can be realized in displaying an image on this panel. The plasma display panel is then driven by using binary code words of 6 bits each, whereby a code word indicates the intensity level of a pixel in binary form.
In driving a plasma display panel, the frame period, i.e., the period between two successive images, is divided into a number of sub-field periods. During each of these sub-field periods, a cell may or may not be switched on, and the integration over the sub-field periods results in a perceived intensity level of the pixel corresponding with this cell. Instead of displaying a pixel integrally, on a plasma display panel, the pixel is displayed as a series of sub-pixels shifted in time with respect to each other. This may cause artifacts if the eyes of the viewer move. Then, it appears as if the sub-pixels do not originate from a single position and a blurring effect occurs. Furthermore, artifacts may occur in case the images show a moving object. The movement needs to be taken into account when displaying the object in a number of sub-fields. For each next sub-field, the object must be moved a little. Motion compensation techniques are used to calculate a corrected position for the sub-pixels in the sub-fields. In some circumstances, the motion compensation is not fully reliable and may produce erroneous results, e.g., in an area of the image with little detail. The erroneous results lead to motion compensation where this should not be done. This gives so-called motion artifacts which are very visible.
An artifact is most noticeable if two neighboring pixels have a small difference in intensity level while, for one of the pixels, the sub-field with the largest coefficient of weight is on and, for the other of the pixels, this sub-field is off. In case of the example of the binary code above, the code word for one pixel has the most significant bit on and the code word for the other pixel has the most significant bit off. Any error in the calculated position of a sub-field, i.e., any motion artifact involving these pixels, will then give a relatively large artifact in the displayed image. The device described in U.S. Pat. No. 5,841,413 tries to mitigate these artifacts by restricting the code words that are used. This known device employs more sub-fields than necessary for realizing the required set of intensity values. The resulting set of code words for expressing the intensity value is redundant, i.e., for a given intensity value, more than one code word is avaiable. From this redundant set, a subset is created whereby those code words are selected that give the least differences in the most significant bit for expressing a difference between the intensity values. This subset is created by searching the original set and determining what the effect on the artifacts may be for a difference between a given code word and each of the other code words.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a method as described in the preamble with an improved reduction of artifacts. This object is achieved, according to the invention, in a method which is characterized in that the combination of sub-fields for the particular pixel is selected on the basis of the combination of sub-fields selected for at least one other pixel of the image. This makes it possible to select, for the particular pixel, the best combination of sub-fields from among the possible combinations taking into account the actual content of the image to be displayed. The best combination of sub-fields is that one where any occurring artifact is as small as possible. The selection of sub-fields for the particular pixel on the basis of actual content is better than the selection made in the known method, where the combination is selected only on the basis of the comparison of the combinations themselves.
An embodiment of the method according to the invention is characterized in that the combination of sub-fields for the particular pixel is selected to contain the same sub-fields as the combination of sub-fields for the at least one other pixel, such to the extent possible and with preference for the sub-field for outputting the highest illumination level. Hence, any difference between the intensity levels of the particular pixel and the other pixel will be realized as much as possible with sub-fields for the low illumination levels. Therefore, the two combinations will have the same sub-fields for the high illumination levels whenever possible. Or differently phrased, the result is that the most significant bits of the code words representi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of and unit for displaying an image in sub-fields does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of and unit for displaying an image in sub-fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and unit for displaying an image in sub-fields will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.