Method of and device for buffering sheets of cut stock in...

Conveyors: power-driven – Conveyor system for establishing and moving a group of items – By shifting group of items simultaneously from stream...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S433000, C083S719000

Reexamination Certificate

active

06296103

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention concerns a method of and a device for buffering sheets of cut stock in block-shaped stacks ranged in rows between stock-cutting machinery and further-processing machinery.
A method of and a device for cutting stacked sheets of paper, cardboard, plastic, etc., especially sheet assemblages, is known from German A 3 101 911. The device is a guillotine. To ensure that the blade always cuts the stack along the intended line, the stack must be advanced below the blade very precisely. Even slight displacements, dimensional deviations due to curling paper for instance, can force the blade to cut the paper away from the intended line. Assemblages especially, with a number of labels printed on them, can accordingly be cut inside the print. To prevent this malfunction the sheets are printed with the separate printed matter not immediately mutually adjacent but with empty passages left between them. It is accordingly admittedly necessary to make additional cuts between the main cuts, although the procedure does prevent cutting into the printed matter. The stacks can also be trimmed at their margins before they are cut. The advantage of this approach is that, once the margins have been trimmed, the stack will be in a prescribed shape or format, a decisive feature for ensuring the accuracy of the following major cut. When labels are cut, the margin-trimmed block-shaped stack is initially cut parallel to the main cut and then parallel to any intermediate cuts and rotated 90° to allow main cuts and intermediate cuts if any to be made perpendicular to the original cuts. Subsequent to every 90° rotation, accordingly, every main cut will leave a row of smaller block-shaped stacks adjacent parallelling the blade, every row itself being block-shaped. The smaller stacks are forwarded to further-processing machinery, where they are punched or bundled for example.
From the processing steps hereintofore described it will be evident that the stock will necessarily leave the stock-cutting machinery discontinuously. It will accordingly take several minutes, two or three for instance, to make the marginal cuts and to cut the main stack into strips. During this time, no cut stock can be forwarded to the further-processing machinery. The further processing machinery, however, could easily handle the smaller stacks, bundling them or punching out irregularly shaped labels and then bundling them.
Every row of smaller stacks produced by the guillotine described in German A 3 101 911 must be removed from the vicinity of the blade manually and transferred to an adjacent counter, whence they can be forwarded manually to the further-processing machinery.
Stock-cutting machinery with two guillotines is known from European A 0 242 763. The downstream guillotine generates the rows of stacks, and a pusher removes them longitudinally. In practice, the pusher transfers each row generated in this system onto an adjacent counter and hence directly to further-processing machinery, where each stack is banded.
A multiple bundler with a feed is known from German U 29 804 929. This device is employed to bundle discontinuously supplied rows of finished stacks, large-format stock in other words, and not to handle rows of smaller stacks.
SUMMARY OF THE INVENTION
The object of the present invention is accordingly a method of and a device for buffering rows of stacked sheets of stock for cutting that will allow downstream continuous processing in further processing machinery of material discontinuously cut in stock cutting machinery.
This object is attained in accordance with the present invention by providing a special approach to buffering the rows of stacks resulting from each cut. Each row is forwarded to the buffer's intake and thence to a marshaling area. Depending on the cutting process and accordingly on the further supply of rows to the buffer's intake, several rows are assembled in the buffer's marshaling area and forwarded to its outtake. If there are any rows already there, the new rows are combined along with them into a group. Otherwise, they are forwarded directly to where the most downstream row will be the next supplied to the further-processing machinery. Whereas the rows in the outtake can be continuously supplied for further processing, the rows at the marshaling area will continue to be assembled and supplied to the outtake before the rows in the outtake can be processed. Thus, stacks or rows of stacks will always be available for further processing.
The stacks are composed of separate layers and not easy to handle. There is in particular a risk of the individual layers sliding over each other. The stacks and rows must accordingly be rotated as little as possible in the buffer. The rows must accordingly be forwarded from the buffer's intake to its marshaling area and from its marshaling area to its outtake in one direction. To ensure optimal spacing of the mechanical components that carry out the method, the rows should be forwarded from the stock-cutting machinery to the buffer's intake at a right angle to the direction they are forwarded from its intake to its marshaling area in. The rows should similarly be forwarded from the buffer's marshaling area to its outtake at a right angle to the direction they are forwarded from its outtake to the further-processing machinery in. The rows can in particular be forwarded from the stock-cutting machinery to the buffer's intake in a direction opposite the direction they are forwarded from its outtake to the further processing machinery in.
The rows or groups can in particular be forwarded in accordance with the present invention by pushing. This is an especially simply way to ensure that the evident stacks will be forwarded precisely into their intended positions. To ensure particularly simple forwarding of the individual rows, the row produced by a specific cutting process in one particular embodiment of the present invention can be electrostatically block-formed, especially before it is forwarded to the buffer's intake. Electrostatically block-forming a row allows it to be forwarded in various ways, especially by belts that can be positioned to convey the individual stacks in a row.
It should be impossible to initiate forwarding of the group from the marshaling area to the outtake while a row is being forwarded from the intake to the marshaling area. This feature will prevent forwarding from the intake to the marshaling area and forwarding from the marshaling area to the outtake from interfering with each other at the marshaling area.
It will be preferable for a row being forwarded to the further processing machinery to be separated from its adjacent row before being forwarded. This feature will prevent relative motion between the individual sheets while adjacent rows are being forwarded.
Another object of the present invention is a device for carrying out the method hereintofore described.
It is practical for some or all of the row-forwarding mechanisms to be pushers and especially pneumatically or electromechanically actuated pushers. The second row-forwarding mechanism is intended to forward a row released from the stock-cutting machinery far enough to allow the next row to be released. The third row forwarding mechanism forwards several rows released from the second row-forwarding mechanism to the fourth row-forwarding mechanism. The fourth row-forwarding mechanism forwards each row to the further-processing machinery individually. All row forwarding mechanisms, or pushers, are accordingly intelligently networked. The device can accordingly be provided with detectors that detect at least the ends of the strokes traveled by the row forwarding mechanism. These detectors can for example be light barriers, limit switches, etc. The row-forwarding mechanisms, the pushers, are regulated to prevent actuation of the second mechanism while the first is forwarding a row into the vicinity of the second and to prevent the third row-forwarding mechanism from initiating any forwarding moti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of and device for buffering sheets of cut stock in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of and device for buffering sheets of cut stock in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and device for buffering sheets of cut stock in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588036

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.