Data processing: speech signal processing – linguistics – language – Audio signal bandwidth compression or expansion
Reexamination Certificate
2000-07-06
2004-07-27
Dorvil, Richemond (Department: 2654)
Data processing: speech signal processing, linguistics, language
Audio signal bandwidth compression or expansion
C382S248000, C382S251000
Reexamination Certificate
active
06768980
ABSTRACT:
The present invention relates to the steganographic embedding of data in a series of digital signals, datastreams or measurements (hereinafter all often generically referred to as “measurements”); being more specifically, though not exclusively concerned with such “measurements” taken directly from an analog data stream, such as, for example, an audio waveform, or from subsampled and/or transformed digital data, as described in said parent U.S. applications Ser. No. 09/389,941 (Process, System, And Apparatus For Embedding Data In Compressed Audio, Image, Video And Other Media Files And The Like), and Ser. No. 09/389,942 (Process Of And System For Seamlessly Embedding Executable Program Code Into Media File Formats Such As MP3 And The Like For Execution By Digital Media Players And Viewing Systems) filed Sep. 3, 1999; the present application containing modified and supplementary material illustrating the generic concepts underlying the basic techniques of said applications.
In some aspects, this application is also useful to incorporate techniques described also in U.S. application Ser. No. 09/518,875 filed Mar. 6, 2000, for Method, Apparatus and System For Data Embedding In Digital Telephone Signals And The Like, And in Particular Cellular Phone Systems, Without Affecting The Backwards Compatibility Of The Digital Phone Signal.
BACKGROUND OF INVENTION
As explained in said parent applications, data has heretofore often been embedded in analog representations of media information and formats. This has been extensively used, for example, in television and radio applications as for the transmission of supplemental data, such as text; but the techniques used are not generally capable of transmitting high bit rates of digital data.
Watermarking data has also been embedded so as to be robust to degradation and manipulation of the media. Typical watermarking techniques rely on gross characteristics of the signal being preserved through common types of transformations applied to a media file. These techniques are again limited to fairly low bit rates. Good bit rates on audio watermarking techniques are, indeed, only around a few dozen bits of data encoded per second.
While data has been embedded in the low-bit of the single-domain of digital media enabling use of high bit rates, such data is either uncompressed, or capable of only relatively low compression rates. Many modern compressed file formats, moreover, do not use such signal-domain representations and are thus unsuited to the use of this technique. Additionally, this technique tends to introduce audible noise when used to encode data in sound files.
Among prior patents illustrative of such and related techniques and uses are U.S. Pat. No. 4,379,947 (dealing with the transmitting of data simultaneously with audio); U.S. Pat. No. 5,185,800 (using bit allocation for transformed digital audio broadcasting signals with adaptive quantization based on psychoauditive criteria ), U.S. Pat. No. 5,687,236 (steganographic techniques); U.S. Pat. No. 5,710,834 (code signals conveyed through graphic images); U.S. Pat. No. 5,832,119 (controlling systems by control signals embedded in empirical data), U.S. Pat. No. 5,850,481 (embedded documents, but not for arbitrary data or computer code); U.S. Pat. No. 5,889,868 (digital watermarks in digital data); and U.S. Pat. No. 5,893,067 (echo data hiding in audio signals).
Prior publications relating to such techniques include
Bender, W. D. Gruhl, M. Morimoto, and A. Lu, “Techniques for data hiding”,
IBM Systems Journal, Vol
. 35
, Nos
. 3
&
4, 1996, p. 313-336;
A survey of techniques for multimedia data labeling, and particularly for copyright labeling using watermark in the encoding low bit-rate information is presented by Langelaar, G. C. et al. in “Copy Protection For Multimedia Data based on Labeling Techniques” (http://www-it.et.tudelft.nl/html/research/smash/public/benlx96/benelux_cr.html).
In specific connection with the above-cited “MPEG Spec” and “ID3v2 Spec” reference applications, we have disclosed in the above-mentioned parent application Ser. No. 09/389,942, techniques applying novel embedding concepts directed specifically to imbuing one or more of pre-prepared audio, video, still image, 3-D or other generally uncompressed media formats with an extended capability to supplement their pre-prepared presentations with added graphic, interactive and/or e-commerce content presentations at the digital media playback apparatus.
The before-mentioned other parent application Ser. No. 09/389,941 is more broadly concerned with data embedding in compressed formats, and with encoding a frequency representation of the data, typically through a Fourier Transform, Discrete Cosine Transform, Wavelet Transform or other well-known function. The invention embeds high-rate data in compressed digital representations of the media, including through modifying the low-bits of the coefficients of the frequency representation of the compressed data, thereby enabling additional benefits of fast encoding and decoding, because the coefficients of the compressed media can be directly transformed without a lengthy additional decompression/compression process. Such technique also can be used in combination with watermarking, but with the watermark applied before the data encoding process.
The earlier cited Langelaar et al publication, in turn, references and discusses the following additional prior art publications:
J. Zhao, E. Koch: “Embedding Robust Labels into Images for Copyright Protection”, Proceedings of the International Congress on Intellectual Property Rights for Specialized Information, Knowledge and New Technologies, Vienna, Austria, August 1995;
E. Koch, J. Zhao: “Towards Robust and Hidden Image Copyright Labeling”, Proceedings IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, June, 1995; and
F. M. Boland, J. J. K O Ruanaidh, C, Dautzenberg: “Watermarking Digital Images for Copyright Protection”, Proceedings of the 5th International Conference on Image Processing and its Applications, No. 410, Endinburgh, July, 1995
An additional article by Langelaar also discloses earlier labeling of MPEG compressed video formats:
G. C Langelaar, R. L. Lagendijk, J. Biemond: “Real-time Labeling Methods for MPEG Compressed Video,” 18
th Symposium on Information Theory in the Benelux
, 15-16 May 1997, Veldhoven, The Netherlands.
These Zhao and Koch, Boland et al and Langelaar et al disclosures, while teaching encoding technique approaches having partial similitude to components of the techniques employed by the present invention, as will now be more fully explained, are not, however, either anticipatory of, or actually adapted for solving the total problems with the desired advantages that are addressed and sought by the present invention.
Considering, first, the approach of Zhao and Koch, above-referenced, they embed a signal in an image by using JPEG-based techniques. (Digital Compression and Coding of Continuous-tone Still Images, Part 1: Requirements and guidelines, ISO/IEC DIS 10918-1.) They first encode a signal in the ordering of the size of three coefficients, chosen from the middle frequency range of the coefficients in an 8-block or octet DCT. They divide eight permutations of the ordering relationship among these three coefficients into three groups: one encoding a ‘1’ bit (HML, MHL, and HHL), one encoding a ‘0’ bit (MLH, LMH, and LLH), and a third group encoding “no data” (HLM, LHM, and MMM). They have also extended this technique to the watermarking of video data. While their technique is robust and resilent to modifications, they cannot, however, encode large quantities of data, since they can only modify blocks where the data is already close to the data being encoded; otherwise, they must modify the coefficients to encode “no data”. They must also severely modify the data since they must change large-scale ordering relationships of coefficients. As will later more fully be explained, these are disadvantages overcome by the present invention through its technique of encoding data by ch
Meyer Josslyn Motha
Meyer Thomas W.
Dorvil Richemond
Lerner Martin
Rines and Rines
LandOfFree
METHOD OF AND APPARATUS FOR HIGH-BANDWIDTH STEGANOGRAPHIC... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with METHOD OF AND APPARATUS FOR HIGH-BANDWIDTH STEGANOGRAPHIC..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and METHOD OF AND APPARATUS FOR HIGH-BANDWIDTH STEGANOGRAPHIC... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3227466