Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment
Reexamination Certificate
2001-09-25
2003-12-16
Marc-Coleman, Marthe Y. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Navigation
Employing position determining equipment
Reexamination Certificate
active
06665613
ABSTRACT:
FIELD
The present invention relates to the field of GeoFencing—the concept of providing information that indicates through GPS signal fixing at, and of, a vehicle or other apparatus or system receiving its GPS location or address, that the vehicle or the like has not strayed beyond some predetermined area surrounding that location—the so-called GeoFence established around an original address or location of the vehicle or the like.
BACKGROUND
As described, for example, at Qualcam website, Air IQ website, and Highway Master website, as illustrations, the prior art of such GeoFencing requires either the entry via send-port or other physical interface or the day-to-day downloading at the vehicle of data points for establishing the parameters of the fence to be established around the vehicle origin location, to be transmitted from an outside source such as a remote central server station, generally over an air interface such as the cellular telephone networks. In accordance with existing methods, hardware is installed in the vehicle, such hardware consisting of a GPS receiver, processor/memory, and firmware, and power supply. The variations of the GeoFence can be applied once the latitude and longitude is determined by the hardware and the location is registered at the central station, which then transmits data points for the setting of the desired GeoFence area, for downloading at the vehicle to define the desired GeoFence latitude and longitude parameters. If the vehicle is unauthorizedly driven out of the established GeoFence, it is possible then to cause an alarm to be sent over a radio or telephone channel to provide notification that the vehicle has been so moved. Alternatively, if the vehicle, such as construction equipment or the like, is to be located at a different site, a new GPS origin location is received at the new site by the vehicle and is registered at the central station, and new sets of data points are transmitted from the station to the vehicle or apparatus to set up a new GeoFence; or to expand or contract a GeoFence, all as desired. The fence parameters may change because the position of the vehicle itself may be moved from town to town, requiring changed origin points; or the size of the GeoFence may be varied, altering the radius from, say, one mile to two miles. A delivery vehicle, for example, may choose to expand the area of its delivery van from just one city to neighboring cities.
The before-described present-day transmission of GeoFence data to be downloaded at the vehicle requires considerable bandwidth in the communications network to enable downloading all of the new latitude-longitudinal information to establish the GeoFence, requiring considerable air time to do so and intensive messaging, or requires direct input via a physical interface to the hardware. Extensive messaging is required, indeed, to get enough data into the vehicle hardware to establish a new GeoFence.
These difficulties are alleviated in accordance with the technique of the present invention by building the capability of establishing the new GeoFence within the firmware product in the vehicle itself, and requiring only commands from the central station to set up the new GeoFence—totally eliminating the present-day need for transmitting data from the station and re-loading such new data points into the vehicle resident hardware.
As an illustration, it may be desired to move a piece of construction equipment, say, a steam shovel, to a new location. Once the vehicle is moved, the central station sends a command to it to determine the new home origin location points or address by its GPS equipment and to register the new location with the station. A subsequent command will activate the algorithm provided in accordance with the invention within the firmware of the vehicle processing equipment to calculate within the unit itself, the new data points for the selected GeoFence—say a circle of 2-mile radius about the new origin location. This totally eliminates the requirement for the station to send the new fence data, since the vehicle unit itself now calculates the new GeoFence parameters dynamically within itself.
At the time of manufacture of the vehicle processing unit, the characteristics of the GeoFence are, or can be, pre-established—whether it will be a circle, or a square, or a polygon such as a hexagon or an octagon approximating a circle. Once determined, the unit software will, in operation, generate the new latitude and longitude points for the perimeter of the GeoFence about the home origin point or address.
OBJECTS OF INVENTION
The primary object of the invention, thus, is to provide a new and improved method of and apparatus for GeoFencing that shall not be subject to the prior art and present-day disadvantages above described; but that, to the contrary, enable dynamic GeoFence establishment at the vehicle itself upon command from a remote central or control station.
Other and further objects will be explained hereinafter and are more particularly delineated in the appended claims.
SUMMARY
In summary, however, from one of its broadest viewpoints, the invention embraces a method of controlling from a remote control center the dynamic GeoFencing of a vehicle or other movable apparatus internally provided with a GPS receiver, a software-implemented processor, and communication links, that comprises, transmitting a command from said control center to the vehicle to receive and transmit to the control center, its current GPS location point; pre-determining at the control center the desired shape and size of a GeoFence around the vehicle and transmitting commands to the vehicle to establish such a GeoFence; and responding at the processor to said commands by operating said software to calculate in the processor the location of points defining the perimeter of said desired shape and size of GeoFence, thereby establishing the desired GeoFence about the current vehicle location point from data calculated at said vehicle processor.
Preferred and best mode embodiments and designs are later detailed.
REFERENCES:
patent: 5731785 (1998-03-01), Lemelson et al.
patent: 6480147 (2002-11-01), Durst et al.
patent: 2002/0193121 (2002-12-01), Nowak et al.
Lo-Jack Corporation
Marc-Coleman Marthe Y.
Rines and Rines
LandOfFree
Method of and apparatus for dynamically GoeFencing movable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of and apparatus for dynamically GoeFencing movable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of and apparatus for dynamically GoeFencing movable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097097