Method of achieving superior dispersions of insoluble sulfur...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Treating polymer containing material or treating a solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S182130, C524S742000

Reexamination Certificate

active

06359109

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to sulfur. More particularly, it relates to a novel method of achieving novel superior dispersions of insoluble sulfur in unvulcanized rubber by adding polysulfur to the rubber while the polysulfur is in the rubbery or unhardened state and to the resulting product.
BACKGROUND OF THE INVENTION
Rubber and similar polymers must be mixed with a selection of other ingredients to develop the properties necessary for specific applications. One of these ingredients is a vulcanizing agent. Elemental sulfur is by far the most widely used vulcanizing agent, especially in tires and other dynamic applications. While certain chemical compounds of sulfur can be used as sulfur donors to accomplish vulcanization, only elemental sulfur is believed to impart the optimum combination of properties for most of the tire. One of the most important properties required in tire rubber is fatigue resistance. The superior fatigue resistance achieved when using elemental sulfur instead of sulfur donors is reported in the “Natural Rubber Formulary” pp128-129, and again on pp180-181. Elemental sulfur is used in the rubber industry in two basic forms:
1. Ortho-rhombic (commonly called rhombic) crystals, consisting of molecules containing eight sulfur atoms per molecule in a ring-like structure. This form is referred to as normal, or soluble sulfur. Its main disadvantage is that it “blooms” in the unvulcanized rubber compound.
2. Polymeric sulfur (or polysulfur, as it is sometimes called to distinguish it from organic polymers containing sulfur in their polymer chains) consists of molecules that contain long chains of sulfur atoms, usually thousands of sulfur atoms per molecule. At room and processing temperatures., these chains tend to revert to normal sulfur. This reversion can be deterred by adding certain stabilizing agents in small quantities. The stabilized forms have dominated the market. Polymerized sulfur or polysulfur is referred to as insoluble sulfur. There are no known solvents for insoluble sulfur; hence its name. Its main disadvantage is that it is hard to disperse well in the unvulcanized rubber compound. It is also quite expensive compared to normal sulfur.
The degree of dispersion, in the unvulcanized rubber compound, of all of these compounding ingredients affects the properties of the vulcanized product. This is especially true of the vulcanizing agent. For the vast majority of products, such as tires, the best dispersion gives the-best product because of the homogeneity achieved.
Sulfur exists at room temperatures primarily as rhombic crystals. Other forms of sulfur, such as monoclinic crystalline sulfur, or polysulfur, are the normal primary forms which elemental sulfur assumes at certain higher temperature ranges. At room temperatures, these forms convert, or revert, to rhombic sulfur.
Polysulfur is called insoluble sulfur, especially in the rubber industry, and normal, non-polymeric or rhombic sulfur is called soluble sulfur, because it is soluble to a limited extent in most rubbers. The term “rubber” as used herein means any sulfur vulcanizable polymer. Sulfur vulcanizable polymers are primarily those polymers having carbon to carbon molecular chain structures, with some double bonds existing in their structure. These polymers are called unsaturated. The double bonds are the sites for sulfur vulcanization. The term “rubbery” as used herein means masses of matter that are not hard, brittle, or friable, but are plastic and/or elastic. The term “saturated rubbery polymers” means those rubbery polymers that do not contain sulfur vulcanizable bonds, such as ethylene-propylene rubber.
The amount of normal or rhombic sulfur that is soluble in rubber increases as the temperature increases. Typical rubber compounds contain from one to three parts of sulfur per one hundred parts of rubber hydrocarbon (rhc). The processing of unvulcanized rubber requires mechanical working of the rubber, which generates heat. The temperatures developed as a result of this processing are usually sufficient to dissolve the typical normal sulfur content. When the rubber cools to room temperature the solubility of the sulfur in rubber is exceeded, and a supersaturated solution ensues. This supersaturated portion of the sulfur tends to migrate to the surface of the rubber and crystallize. This condition is called “bloom” and is highly undesirable.
At room temperatures, surface blooming occurs primarily when the concentration of soluble sulfur in the rubber is between the limits of about 0.8 parts and 8.0 parts per 100 parts of rubber hydrocarbon. These limits vary among different compounds. Below the lower limit the sulfur is soluble. Above the upper limit the sulfur drops out of solution in the interior of most rubber compounds, forming micro-crystals throughout the mix. In some rubber compounds these micro-crystals grow to objectionable size, causing nonhomogeneity of properties throughout the vulcanized product.
Polysulfur or insoluble sulfur does not dissolve in rubber, and therefore does not bloom. However, the insoluble sulfur can revert to normal sulfur, and the rate of reversion is a time-temperature phenomenon which increases with temperature. Elemental insoluble sulfur can be stabilized by the addition of various substances, notably the halogens. This stabilized insoluble sulfur tends to remain polymeric at room and processing temperatures but it reverts to normal sulfur at the higher vulcanizing temperatures, thus becoming available for the vulcanization reaction.
Insoluble sulfur is normally supplied by the sulfur manufacturers in discrete particles, or powder. This powder is extremely fine, classically having a reported average particle size of 3 microns. These particles are considerably smaller than the particles usually supplied of normal sulfur. These smaller particles are desired because the dispersion of this form of insoluble sulfur is limited by the particle size supplied, unlike the dispersion of soluble sulfur. This very fine powder presents various processing difficulties. It tends to form dust clouds in the mixing room, which are both a health hazard and a safety hazard. Sulfur dust explosions are a known hazard in the rubber industry. A number of ways to reduce this dusting are mentioned in the literature. Also, the sulfur powder is difficult to disperse in rubber. The individual particles tend to agglomerate. Because of this, the powders are frequently mixed with a portion of a polymer or other matrix materials to form a masterbatch before being added to the final compound. These masterbatches usually contain fifty percent or more sulfur. This processing step adds to the cost. Since these discrete particles retain their identity during mixing, the best possible dispersion is limited by the size of the particles, unless their melting point is exceeded. However, when melted, the rate of reversion is very rapid and the reverted sulfur, of course, blooms, and the advantages of using insoluble sulfur are negated.
The prior art falls in three categories:
1. Insoluble sulfur powders
U.S. Pat. No. 2,419,310 to Belchetz
U.S. Pat. No. 2,419,309 to Belchetz
U.S. Pat. No. 2,579,375 to Grove
These patents deal with insoluble sulfur in a form that has distinct disadvantages. The present invention overcomes these disadvantages.
2. Sulfur donors
U.S. Pat. No. 4,621,118 to Schloman
U.S. Pat. No. 2,989,513 to Hendry
U.S. Pat. No. 2,481,140 to Morris
All of these patents teach a chemical reaction of sulfur with an organic compound to form sulfur donors. The crosslinking achieved using sulfur donors is distinctly different from that achieved using elemental sulfur. No long chain polymers of sulfur are contemplated or achieved. Therefore they are not pertinent.
3. Solutions of normal sulfur
U.S. Pat. No. 1,782,693 to Miller
This patent teaches solutions of normal sulfur in an organic resin. Long chain polymers of sulfur do not go into solution in any known substance. Hence it fails to teach or suggest anything concerning polymeric sulfur.
Recently an “improv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of achieving superior dispersions of insoluble sulfur... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of achieving superior dispersions of insoluble sulfur..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of achieving superior dispersions of insoluble sulfur... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832182

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.