Computer graphics processing and selective visual display system – Computer graphics processing – Animation
Reexamination Certificate
2001-01-26
2004-02-24
Zimmerman, Mark (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Animation
C345S473000, C463S001000
Reexamination Certificate
active
06697071
ABSTRACT:
The present disclosure relates to subject matter contained in priority Japanese Patent Application Nos. 2000-020949, filed on Jan. 28, 2000, and 2001-13882, filed on Jan. 22, 2001, the disclosures of which are expressly incorporated herein by reference in their entireties.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to video games. More particularly, the present invention relates to displaying motion of a virtual object, known as a character, on a screen of a game machine.
2. Description of the Related Art
In recent years, so-called 3D games have become widespread. That is, three-dimensional virtual objects, known as characters, which are made up of polygons are positioned in a virtual 3D space. An image that is viewed from a desired point of view is created and displayed on screen.
A series of motions of a character in a video game is also known as motion. This motion is displayed according to motion data previously stored in memory. The motion data consists of data for specifying a series of postures of a character when its hands and legs are varied. Displaying the motion of a character on a display device is also referred to as reproducing the motion.
When some motion of a character in a game is being displayed, if the motion of the character is varied in response to an input operation of a game player, motion data about modified motion is read from the memory, and the modified motion is displayed according to the motion data read out. However, if a simple transition of the motion is made in this way, the image of the character varies frequently and suddenly when the transition is started. This is undesirable for the game player.
A known method for making a smooth motion transition consists of blending the original motion and the motion that the game player wants to gain. For example, in the technique disclosed in Japanese Patent Laid-Open No. 218961/1997, information for specifying a posture is created every frame from data about the original posture (source posture) and from data about the posture (target posture) that the player wants to gain. Information for specifying the two postures is interpolated every frame. The posture is created every frame. At this time, interpolation ratios are weighted. Weights given to the data about the target motion are gradually increased. In this way, motion data permitting a smooth transition to the target motion is created.
The aforementioned method for making a transition to the desired motion by blending can be applied to only cases where two motions resemble to some extent. For example, in the technique disclosed in the above-cited Japanese Patent Laid-Open No. 218961/1997, a walking motion and a running motion that are similar to each other are morphed. If these motions proceed in the same direction, interpolation between these two kinds of motions is permitted for every posture.
In a sports game, such as a baseball game, the source motion and the target motion (also known as destination motion) are not always alike. For example, the game player's instruction may be switched from “running to the right” to “running to the left”. The rightward and leftward motions are entirely opposite in character's orientation. In running to the right, the hands and legs are moved to go to the right. In running to the left, the hands and legs are moved to go to the left. In this case, if information for specifying the posture at each frame is interpolated, motions of hands and legs are not constant in transitional motions that link together these two kinds of motions, resulting in unnatural motions.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a method of displaying a motion image sequence in such a way that a smooth transition to a target motion image sequence can be made if source motion and target motion are opposite in direction.
It is another object of the invention to provide a game machine using the method described in the immediately preceding paragraph.
It is a further object of the invention to provide a recording medium for use in the game machine described in the immediately preceding paragraph.
An aspect of the present invention provides a method of displaying a final motion image sequence of a character in a video game according to motion data defining variations in posture of the character in the video game. The method includes responding to an input operation of a game player that is performed during display of a first motion image sequence based on first motion data of the character and determining, in response to the input operation, second motion data defining a second motion image sequence of the character. A transitional motion image sequence is created based on a single posture defined in the first motion data and a group of postures defined in the second motion data. The final motion image sequence is displayed, including a portion of the first motion image sequence, the transitional motion image sequence, and a portion of the second motion image sequence.
According to an aspect of the invention, the transitional motion image sequence creates a gradual transition from the single posture defined in the first motion data to the group of postures defined in the second motion data. Also, the single posture defined in the first motion data is a posture being displayed when the input operation is performed by the game player. The transitional motion image sequence of the character may be displayed subsequently to the single posture defined in the first motion data.
The second motion image sequence defined by the second motion data includes an initial posture defined by the second motion data and at least one subsequent posture defined by the second motion data after the initial posture. Also, successive postures of the second motion image sequence defined by the second motion data are successively superimposed on the single posture defined by the first motion data, and transitional postures based on the superimposed postures are placed in a row to create transitional motion data defining the transitional motion image sequence. Or, successive postures of the second motion image sequence defined by the second motion data may be successively combined with the single posture defined in the first motion data, and transitional postures are placed in a row to create transitional motion data defining the transitional motion image sequence.
A second aspect of the present invention provides a method of displaying a final motion image sequence of a character in a video game according to motion data defining a posture of the character at each image frame of the video game. The method includes receiving an input operation of a game player that is performed during display of a first motion image sequence based on first motion data of the character and determining second motion data defining a second motion image sequence of the character. Transitional motion data is created based on a posture of the character displayed in the image frame when the input operation is performed and on a sequence of image postures defined by the determined second motion data. Then, the final motion image sequence is displayed based on the posture of the character displayed in the image frame when the input operation is performed, the transitional motion data, and the second motion data following the sequence of image postures.
A third aspect of the present invention provides method of displaying a final motion image sequence of a character in a video game according to motion data defining variations in posture of the character in the video game. The method includes responding to an input operation of a game player that is performed during display of a first motion image sequence based on first motion data of the character, determining, in response to the input operation, second motion data defining a target motion image sequence of the character and deciding whether the first motion data is motion data created by a combination of plurality of motion data element sets. If
Iino Kazuhiko
Yoshinobu Tomoaki
Greenblum & Bernstein P.L.C.
Kabushiki Kaisha Square Enix
Nguyen Kimbinh T.
Zimmerman Mark
LandOfFree
Method, game machine and recording medium for displaying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method, game machine and recording medium for displaying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, game machine and recording medium for displaying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3347831