Bleaching and dyeing; fluid treatment and chemical modification – Cleaning or laundering
Reexamination Certificate
1999-10-18
2001-09-11
Douyon, Lorna M. (Department: 1751)
Bleaching and dyeing; fluid treatment and chemical modification
Cleaning or laundering
C008S141000, C210S650000, C210S652000, C210S660000, C210S195200, C210S257200
Reexamination Certificate
active
06287347
ABSTRACT:
This invention relates to a process for washing laundry, more especially occupational clothing, in which the laundry is washed with a conventional detergent composition in a conventional institutional washing machine and the wastewater is treated in a membrane unit.
Occupational clothing and other linen from hotels and guesthouses, hospitals, from the food industry, for example abattoirs, butcher's shops, etc., and textiles and occupational clothing from the automotive sector are mainly washed in institutional laundries. The soils occurring in occupational clothing and in the institutional sector frequently lead to particularly serious pollution of the wastewater. Efforts are made to treat the wastewater from institutional laundries by removing the pollutants. Depending on the soil and pollutant levels, the treated water may be discharged into the wastewater system or reused in the washing process, for example in a prewash or rinse cycle.
The membrane units in use today employ ultrafiltration and microfiltration membranes. Unfortunately, a considerable percentage of dissolved organic compounds and dissolved heavy metals is not removed from the wastewater in these units. Although the treated wastewater is clean enough to be discharged into the public wastewater system, it is not clean enough to be reused in the washing process.
Accordingly, the problem addressed by the present invention was to provide a process for washing laundry, more especially occupational clothing, in which the water would be treated to such a high degree of purity that it could be returned to the washing process without affecting washing performance.
Accordingly, the present invention relates to a process for washing laundry, more especially occupational clothing, in which the laundry is washed with a conventional detergent composition in a conventional institutional washing machine and the wastewater is treated in a membrane unit, characterized in that the wastewater is passed through a nanofiltration membrane, separated into a soil-enriched concentrate and a soil-depleted regenerate and the regenerate is returned to the washing process.
It has surprisingly been found that the use of nanofiltration membranes for treating the wastewater leads to a treated (recycled) water —also referred to as the regenerate or permeate—which can be used in other washing processes, for example in the prewash or as rinsing water. In addition, it has been found that even divalent ions, such as Ca
2+
ions and heavy metal ions, are retained by the membrane used so that there is no need to soften fresh water. By virtue of the water-softening effect and the re-use of the treated wastewater, the water demand of washing processes and the overall costs of the washing process can be clearly reduced.
The process according to the invention is particularly suitable for treating wastewater in institutional laundries where, for example, hospital and hotel laundry and occupational clothing is washed.
Nanofiltration membranes with a cutoff (retention capacity, based on the molecular weight of the retained substance) of 100 to 1,000 and preferably 150 to 500 have proved to be suitable as membranes. Because the cleaning solutions generally used are alkaline, the wastewater also is generally alkaline so that the membranes should preferably be alkali-stable. Membranes based on organic polymers and ceramic materials are normally used. Particularly suitable membranes are nanofiltration membranes based on organic polymers which are commercially available from Membrane Products Kyriat Weizmann, Rehovot, Israel.
The washing machines presently in use in institutional laundries do not have to be modified to accommodate the process according to the invention, neither do the detergent compositions used. The soiled laundry is washed in a conventional machine, the wastewater obtained in the particular washing or rinsing step being delivered to a membrane unit and then subjected to the separation process according to the invention. To this end, the wastewater is preferably first collected in a recycling tank. All or only part of the wastewater of a washing machine can be treated.
Where the process according to the invention is applied, the wastewater can be directly delivered to the nanofiltration membrane unit. The wastewater does not have to be subjected to pretreatment by micro- or ultrafiltration although such a pretreatment before the process according to the invention is carried out is not out of the question.
The separation process according to the invention using the nanofiltration membrane unit separates the wastewater into a soil-enriched concentrate and a soil-depleted regenerate which still largely has the acid or alkali content of the wastewater.
After purification in nanofiltration membranes, the regenerate may be passed through an ion exchanger to remove any membrane-permeable impurities present, for example water-soluble salts and ions, especially heavy-metal ions and monovalent ions. The closed water circuit which is made possible by the process according to the invention can lead to a concentration of monovalent ions so that ion exchangers may have to be used. Suitable ion exchangers are commercially available ion exchangers suitable for water treatment.
The percentage of the wastewater which can be separated by such a membrane process into a reusable regenerate (permeate) and a disposable concentrate (retentate) depends on the nature and degree of soiling. In general, around 60% by volume to around 95% by volume of the wastewater can be converted into regenerate under simulated practical conditions. The process as a whole is more economical, the greater the volume of regenerate obtained and returned to the washing process.
The soil-enriched concentrate, which can have a solids content of—for example—around 25% by weight to around 35% by weight, is preferably separately disposed of, for example by burning or by biological degradation, for example in a digestion tower. The concentrate obtained may also be added to the normal process wastewater.
The temperature of the wastewater or rather the soil-laden wastewaters collected in a recycling tank generally does not have to be adjusted to a particular value for the separation process. Instead, the temperature prevailing in the particular wash or rinse cycle may be retained. In order to avoid additional energy consumption, the wastewater or rather the wastewater collected in the recycling tank may be subjected to the separation process at whatever its particular temperature is.
REFERENCES:
patent: 4720345 (1988-01-01), Linder et al.
patent: 5310486 (1994-05-01), Green et al.
patent: 5520816 (1996-05-01), Kuepper
patent: 5587083 (1996-12-01), Twardowski
patent: 0 467 028 (1992-01-01), None
patent: 0578006 A1 (1994-01-01), None
patent: 578006 A1 (1994-01-01), None
patent: 0 578 006 (1994-01-01), None
patent: WO 98/21303 (1998-05-01), None
patent: WO 98/21303 (1998-05-01), None
Brockhaus Joerg
Krack Ralf
Laufenberg Alfred
Merz Thomas
Rossner Dietmar
Douyon Lorna M.
Henkel Ecolab GmbH & Co OHG
Jaeschke Wayne C.
Mruk Brian P.
Murphy Glenn E. J.
LandOfFree
Method for washing clothes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for washing clothes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for washing clothes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2458399