Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2000-09-19
2004-06-01
Corrielus, Jean M. (Department: 2172)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C707S793000, C707S793000, C707S793000, C707S793000, C707S793000
Reexamination Certificate
active
06745210
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention is related generally to electronic/software backup and more particularly to simultaneous and seamless examination of such historical records of backup activity performed across a plurality of backup engines.
2. Description of Prior Art
Most backup engines in use today provide for the repeated, regular electronic transfer, over a network, of data from the point at which it is in regular use to a medium, such a magnetic tape, for the purposes of securing a fallback situation should damage occur to the original data. Included in the list of such software programs, are programs that work on relatively small amounts of data, sometimes on a one-computer-to-one-tape-drive basis, and others that work on very large amounts of data, with banks of tape drives that are used to back up data from potentially thousands of computers connected to a network. Mostly, these backup engines use what is known as a “client/server” model. In the context of backup, this means that there is one computer (the “server”) that controls and manages the actual backup activity, and other computers (the “clients”) that get backed up by the “server”. In this scenario, the backup tape drives are usually connected directly to the backup “server”. There is also usually more than one backup server, each of which is responsible for the backup of data of numerous clients.
A central function of the activity of backup is the ability to “restore” data in the case of damage to the data that is in use. The backup server computer too usually controls this restore process. Understandably, the time it takes to recover data, and the confidence that the data recovery process will succeed, are two critical aspects of the backup and restore function as a whole. Disk drive capacities and data volumes, and consequently the volumes of data to be backed up, have historically been increasing at a greater rate than the backup server speed, tape drive capacity and network bandwidth are increasing to handle it. Accordingly, new technologies have been added to help. Such new technologies include fiber-optic cables (for fast data transfer across the network), faster chips, tape drives that handle more tapes, faster tape drives, “Storage Area Networks” and so on.
The activity of backup has become more and more critical, as the importance of the data has increased. At the advent of the desktop “revolution”, that is, when people first started using personal computers (PCs), almost every piece of important data was still stored on one, single computer, possibly a mainframe or a minicomputer. As the numbers and types of computers proliferated, particularly on the desktop, and the purpose for which these desktops were now being used, making the data on such computers increasingly valuable, many different products designed to backup data were created and put into the marketplace. Now, there are some 50 or more different backup products in use by organizations and private individuals. Generally, but not always, such backup engines (products) have a reputation for being difficult to use. When there is an exception to this, the backup engine often has other, perhaps related, limitations (e.g. the amount of data is can back up is small).
Not all backup engines perform the same function. Thus, it is frequently necessary to have two or more different types of backup engines in use within the same organization, especially in large organizations. Anecdotally, one company has as many as 17 different backup engines in use somewhere in their organization. This is referred to as fragmentation. In large organizations, is has become necessary to hire expensive expertise to manage such large backup and restore services. The more varied their backup engines, the more expensive this becomes. Also, for large organizations, it has become increasingly likely that scheduled backup activities will fail. Because of the extra complexity of running a variety of backup engines, and because of the shear number of backup activities that need to take place regularly, failed backups often go unnoticed in a sea of extraneous backup information. An additional problem is that beyond a certain number of hours, perhaps minutes, if identifying a failed backup takes too long, then it often becomes too late for meaningful corrective action to be taken. As a result, large organizations often take an expensive “best guess” approach. Anecdotally, the level of confidence that large organizations live with regarding backup success is said to be about 80%. In other words, it is expected that no more that 4 out of 5 backups will be successful. Almost every large organization will relate experiences where data was lost because they mistakenly believed the data was been backed up.
Also, a problem that is of increasing significance is the fact that there is currently no practicable means of charging 3
rd
parties for backup services rendered, even though the sharp increase in organizations providing that service for pay is expected to continue.
In the marketplace today there are several backup reporting products available. Each works with only one backup engine. There are no known patents relating to any of the following backup reporting products.
1. Legato GEMS Reporter™, which provides trend analysis and text-based failures analysis. This product works with Legato NetWorker. It is built to handle up to approximately 4 or 5 average-sized backup servers.
2. Veritas Advanced Reporter™ 3.2 from Veritas is similar to GEMS Reporter.
3. SAMS Vantage™ provides statistical reports from backup activity of Computer Associates ArcServeIT product.
No known prior art combines backup statistics from a plurality of backup engines with monetary values to produce billing reports.
No known prior art provides billing reports based on backup activity statistics.
No known prior art uses an association with owners of data to control the grouping of data within such a billing report.
No known prior art allows the association of backup data amount pro rated pricing to control the amounts appearing on such billing reports.
SUMMARY
The present invention provides a method of visually representing historical records of backup activity across a plurality of backup engines, stored in a relational database, in such a way that key backup performance metrics are made obvious. In addition, said records are also organized and represented in such a way as to allow organizations to charge 3
rd
parties for backup services rendered to those 3
rd
parties.
TERMINOLOGY USED IN THIS DOCUMENT
Backup Engine
The term “backup engine” is used throughout this document. It means any software program, or part of a program, designed to backup electronic data onto a data storage medium such as magnetic tape. Veritas Backup Exec™ and IBM Tivoli™ Storage Manager are two well-known examples. There are over fifty backup engines generally available in the market today, and new ones are being created regularly. Although this patent does not name each specifically, the term plurality of backup engines is meant to cover any combination of two or more such backup engines.
SQL
All of the SQL used throughout the preferred embodiment adheres to the industry-standard known as ANSI SQL, American National Standards Institute, Structured Query Language. IBM invented the original SQL language during the 1960s.
SQL Server
As a place to store historical records of backup activity, the invention makes extensive use of, and accordingly references in this document to, a software program known as Microsoft SQL Server (SQL Server). One or more databases can be stored in and managed by an installation of SQL Server. This embodiment uses one database, named “backupreport”. The tables directly or indirectly pertaining to this embodiment are detailed in FIG.
5
. See also patents [applied for simultaneously to this patent].
Using SQL Server is the preferred embodiment.
BRG
The term BRG, an acronym used in this document for “Backup Report Graphical User Interface”, is used to represent the embodiment d
Bear Cory
Scanlan Liam
Bocada, Inc.
Corrielus Jean M.
Gray Cary Ware & Freidenrich LLP
LandOfFree
Method for visualizing data backup activity from a plurality... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for visualizing data backup activity from a plurality..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for visualizing data backup activity from a plurality... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328523