Method for vacuum packaging liquid containing foodstuff

Food or edible material: processes – compositions – and products – Processes – Packaging or treatment of packaged product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S402000, C426S399000, C426S487000

Reexamination Certificate

active

06770314

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of packaging goods. In particular, but without limitation, the present invention relates to methods of vacuum packaging goods.
BACKGROUND OF THE INVENTION
Methods of vacuum packing food are well known. A basic vacuum packing process for packaging a foodstuff, for example coffee, comprises placing the foodstuff inside a plastic pouch, placing the pouch inside the cavity of a vacuum packer, and removing the air from the cavity by means of the vacuum pump. The pouch is then sealed whilst it remains in the evacuated cavity in order to maintain a vacuum inside the pouch. The shelf life of foodstuffs can be greatly enhanced by using this method of packaging.
It in also known to use gas flushing vacuum packing to pack foodstuffs. Gas flushing vacuum packing involves placing the foodstuff in a container and placing the container in the cavity of a vacuum packer. Again the cavity is evacuated by means of the vacuum pump of the packer. In this case though, before the container is sealed, the cavity of the vacuum packer is filled with an inert gas, for example, helium, argon, nitrogen or carbon dioxide or mixtures thereof. The amount of inert gas supplied to the cavity is generally sufficient to return the pressure inside the cavity to at or around atmospheric pressure, but this can be varied as required. The container is then sealed whilst in the inert gas atmosphere, thereby providing a sealed container in which the foodstuff is stored in an inert atmosphere. Gas flushing vacuum packing is often used to package fresh meat, for example, and is advantageous in that is can prolong the shelf life of refrigerated foodstuffs.
Whilst the aforementioned methods of packaging are advantageous for packaging solid goods, such as coffee or meat, ouch methods have not been found suitable for packaging goods comprising a liquid element. By “liquid element” we mean the portion of the goods which are in a liquid state and are separable from and not a component part or any solid element of the goods.
When goods having a liquid element are subjected to vacuum packing gases, dissolved in the liquid come out of solution, i.e. they form a gas, due to the reduction in pressure. This is a problem, in that in order to operate properly, and provide an airtight seal, it is important that the vacuum packer is kept clean. When the liquid boils, it tends to spray over the inside of the vacuum packer cavity and reduces the effectiveness of the packaging. Furthermore, the majority of the liquid is removed from the goods to be packaged.
It is an object of preferred embodiments of the present invention to provide an improved method of packaging goods.
SUMMARY OF THE INVENTION
The present invention provides a method of packaging foodstuffs having a liquid element and a solid element, said liquid element comprising dissolved gases, the method comprising the steps of: subjecting the liquid element to a gas removal process to remove a substantial proportion of the dissolved gases from the liquid element prior to said foodstuff being subjected to a vacuum packing process and before being combined with the solid element of the foodstuff in a single container for the vacuum packing process; and vacuum packing the combined liquid element and solid element; and in which no heat is applied to the liquid element during the packaging process.
Preferably, the liquid element is treated by subjecting it to a gas removal process.
Suitably, the gas removal process comprises subjecting the liquid to an evacuation process in a vacuum packer. Suitably, the liquid is placed in a container, which is placed in the cavity of a vacuum packer. The cavity is then evacuated in the conventional manner.
As the cavity is evacuated, any dissolved gases in the liquid come out of solution into the gaseous state and escape in the form of bubbles which burst allowing the gas to escape. When substantially all of the dissolved gases have been removed from the liquid the liquid stops bubbling.
Suitably, the gas removal process removes substantially all of the dissolved gases from the liquid.
The length of time taken to remove substantially all of the dissolved gases from the liquid will vary depending upon the composition of the liquid, the viscosity of the liquid, the volume of liquid and the exposed surface area of the liquid held in the container, amongst other things.
Because the escaping gases form bubbles the volume of the liquid increases during the gas removal process whilst the bubbles of gas escape. An the viscosity of the liquid increases, the size of the bubbles increases. Therefore, the volume of a viscous liquid will increase more during the gas removal process than would the volume of a less viscous liquid.
For liquid elements comprising a particularly viscous liquid which comprises a plurality of component liquids, for example a cream based sauce for food, it may be advantageous to subject the component parts of the liquid element to separate gas removal processes. For example, in the case of a cream based white wine sauce the white wine and the cream are advantageously subjected to separate gas removal processes before being combined together for the vacuum packing process.
Suitably, the container holding the liquid has a volume of at least twice, preferably at least three times, more preferably at least four times and most preferably at least five times, the volume of the liquid being subjected to the gas removal process.
Generally, the gas removal process requires evacuation of the cavity for a time of the order of seconds, for example for 20-30 seconds. However, it has been found that evacuation for a longer period is not detrimental to the nature and quality of the liquid. Evacuation until the liquid stops bubbling (to the naked eye) is considered to be the minimum period required.
In order to be certain that substantially all of the dissolved gases have been removed from the liquid, the liquid could be subjected to evacuation for an extended period, which extended period is longer than the minimum period. This extended period may be up to 120%, is suitably up to 130%, is preferably up to 150%, is more preferably up to 160% and is especially up to 200% or more of the minimum period.
Suitably, during the gag removal process, the cavity of the vacuum packer is evacuated to at least a 90% vacuum, preferably to at least a 95% vacuum, more preferably to at least a 99% vacuum and especially to at least a 99.5% vacuum.
It has been found that the gas removal process outlined above does not affect the flavor or consistency of the liquid element, and because no heat is applied to the liquid element, it remains uncooked during the gas removal process.
An alternative gas removal process, involves cooking the liquid element, for example, by heating to boiling point. However, this process is not preferred if the object is to provide a product comprising fresh, uncooked food. The quality of the sauce will be reduced by cooking before packaging followed by subsequent reheating for consumption.
As an alternative to a gas removal process the liquid element may be treated by subjecting it to a freezing process prior to the goods being subjected to a vacuum packing process.
Suitably, if the goods comprise a liquid element and a solid element, only the liquid element is subjected to freezing. However, both the liquid element and the solid element may be subjected to freezing before being subjected to the vacuum packing process.
Because the liquid element is in a solid form during the vacuum packing process, the dissolved gases in the liquid cannot leave solution and form a gas which escapes during the vacuum packing process. Therefore, the disadvantages of vacuum packing a liquid are avoided. The liquid element can be left to melt after packaging.
An advantage of treating the liquid element by freezing is that again, this process avoids cooking the liquid prior to packaging and thus avoids repeated cooking processes which impair the quality of the food.
Preferably, treatment of the liquid ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for vacuum packaging liquid containing foodstuff does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for vacuum packaging liquid containing foodstuff, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for vacuum packaging liquid containing foodstuff will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3342529

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.