Method for utilizing local resources in a communication system

Telecommunications – Radiotelephone system – Zoned or cellular telephone system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S412100, C455S517000, C455S558000, C370S328000, C370S338000, C370S401000, C709S230000, C709S227000, C709S228000

Reexamination Certificate

active

06549773

ABSTRACT:

The present invention relates to a method in a communication system according to the preamble of claim
1
. The invention also relates to a communication system according to the preamble of claim
11
. Furthermore, the invention relates to a wireless communication device according to the preamble of claim
12
.
There are known wireless communication systems, such as the PLMN (Public Land Mobile Network), which is a communication network based on a cellular system. One example that can be mentioned is the GSM
900
mobile communication network according to the GSM standard (Global System for Mobile Communications). The cells of the communication network are distributed within a wide geographical area, and mobile stations (MS), such as mobile phones, which are connected to the communication network via base stations BS, move from one cell to another. These mobile phones are distinguished from each other by means of a subscriber-specific identification code, wherein communication, such as data transmission or an audio call, is possible between two mobile stations. The identification code is, for instance, an IMSI code (International Mobile Subscriber Identity). The communication network takes care of routing information via base stations and mobile services switching centers (MSC), by utilizing register data which indicate the location of the mobile station in the area of the cells of different base stations. Furthermore, the following wireless communication networks should be mentioned: GSM-1800, GSM-1900, PDC, CDMA, US-TDMA, IS-95, USDC (IS-136), iDEN (ESMR), DataTAC, and Mobitex.
In order to perform data transmission and processes connected with data transmission in communication devices, such as servers and wireless communication devices, which are connected to a communication network, a set of communication rules must be available for defining the allowed messages and the function of the participants of the data transmission at the different stages of the communication. As is well known, one such set of communication rules in data transmission is a protocol used by the devices to communicate with each other. For data transmission especially in wireless communication networks, a wireless application protocol WAP is developed, which will be used as an example in the following specification. One version of the WAP application protocol is specified in the WAP Architecture Version Apr. 30, 1998 publication (Wireless Application Protocol Architecture Specification; Wireless Application Protocol Forum Ltd, 1998), which is published in the Internet, and which includes for example a description on the architecture of the WAP application protocol. By means of the WAP application protocol, it is possible to define a series of protocols on different levels, which can be used to develop new services and devices e.g. for digital mobile communication networks based on a cellular network. For example, the WAP application protocol has already been developed for SMS services (Short Messaging Service), USSD services (Unstructured Supplementary Services Data), CSD services (Circuit Switched Data), and GPRS services (Global Packet Radio System) of the GSM network, and for the services of the IS-136 and PDC network.
The WAP application protocol is designed to describe those standard components that enable data transmission especially between mobile stations (client) and servers of the communication network (origin server). In order to gain access to servers located in the WWW network, the WAP uses a gateway which also functions as a proxy containing functions for data transmission between a WAP protocol stack and a WWW protocol stack (HTTP, TCP/IP), as well as functions for coding and decoding the content (WML, Wireless Markup Language, or HTML) of the information for data transmission. In the WAP, specified presentation formats are used to define the content of the information and the applications. The content is transferred using standardized data transmission protocols. A so-called browser or a microbrowser is used in the wireless communication device to control a user interface (UI).
The application layer in the architecture of the aforementioned WAP application protocol applies a defined architecture of a wireless application environment WAE. The purpose of the WAE application environment is to provide operators and service providers with an open environment, by means of which it is possible to create a large group of services and applications on top of different wireless communication methods functioning as a platform. The different WAE applications of communication devices follow a procedure used in the Internet World Wide Web (WWW) network, in which different applications and information are presented by means of standardized presentation formats and browsed for example with known WWW browsers. Consequently, in order to use different resources of communication devices, the servers and the information of the Internet network are labelled with a URI address (Uniform Resource Identifier) which is independent of the location, and the presentation format of the information is supported by the browser used, and is, for example, HyperText Markup Language (HTML) or JavaScript. On the other hand, the WAE application environment especially takes into account the requirements of the wireless communication devices and wireless communication networks. At present, according to prior art, the WAE applications (user agents), such as browsers, only support the WSP/B protocol. For example browsers communicate with a gateway server via a WSP layer (Wireless Session Protocol) of the WAP protocol stack, which will be described later. The gateway, in turn, provides functions for converting the data transmission protocol so that access to the resources of a WWW server using the HTTP protocol would be possible. According to prior art, the WAP protocol stack is described in more detail in the aforementioned publication, and the WAE application environment is described in more detail e.g. in the WAP WAE Version Apr. 30, 1998 publication, published in the Internet (Wireless Application Protocol Wireless Application Environment Overview; Wireless Application Protocol Forum Ltd, 1998).
The URI addresses are used to locate resources by providing the location of the resource with an abstract identification. When the resourse is located, the system can subject the resource to different procedures which depend on the application and on the purpose of pursuing access to the resource. As is well known, several different data transmission protocols are used in this context, of which for example the HTTP (HyperText Transport Protocol), FTP (File Transfer Protocol), MAILTO (Electronic Mail Address), and GOPHER (The Gopher Protocol) can be mentioned.
As is well known, the URL address used by the HTTP is utilized to indicate resources which are available in the Internet network, for example in its servers, by using an HTTP data transmission protocol, and it has the format:
http://<host>:<port>/<path>,
in which the data transmission protocol used can be deduced from the “http” part, “<host>” represents the domain name or the IP address (Internet Protocol) of the server in the communication network, “<port>” represents the number of the port, and it can also be left out, because data transmission protocols use a default port. Furthermore, “<path>” describes the resource in question in more detail and functions as a selector in the HTTP. The prefix “//” illustrates that the address follows the data transmission protocols used in the Internet network. A more precise indication of the resources by means of the “<path>” part varies in different data transmission protocols, and in addition to that, it is possible to provide a “<user>” part between the “//” and “<host>” parts to indicate the user, as in the FTP, and a “<password>” part to indicate a password. The resource can also be identified by means of a URN name (Uniform Resource Naming), wherein it is possible to use on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for utilizing local resources in a communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for utilizing local resources in a communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for utilizing local resources in a communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002979

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.