Method for utilizing gas reserves with low methane...

Power plants – Combustion products used as motive fluid – Process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S039120, C452S086000

Reexamination Certificate

active

06523351

ABSTRACT:

This invention relates to the combustion of natural gas having relatively low methane concentrations and relatively high concentrations of inert gases. More particularly, this invention relates to the utilization of natural gas reserves having methane gas concentrations of from above 40 to about 80 volume percent methane by increasing the relative concentration of inert gases and using the methane produced thereby in a process which produces pipeline natural gas. In one aspect, blending hydrogen gas to provide an inert gas and hydrogen enhanced methane gas blend with a methane gas concentration of not more than about 40 volume percent, based upon the total volume of the gas. This gas blend is used for fuel in gas turbines.
BACKGROUND OF THE INVENTION
Currently there are substantial methane gas reserves with relatively low methane gas concentrations. Many of these reserves have methane gas concentrations from about 40 to about 80 volume percent. Currently, impurities are removed from natural gas to make pipeline quality natural gas which normally have methane concentrations of from about 95+ to about 99+ volume percent. To fuel gas turbines to make electric power, converting natural gas having methane concentrations of from about 40 to about 80 volume percent methane to pipeline quality natural gas becomes economically impractical because the conversion is capital intensive. Moreover, natural gas with methane concentrations in the range of 40 to 80 volume percent does not necessarily provide a reliable fuel source for gas turbines, especially at the low end of the latter range, to generate power with enhanced outputs of power because natural gas with such low methane concentrations will not provide a stable flame for fuel combustion without special equipment designs, catalysts and without special balancing of oxygen with other combustibles. Moreover, streams with 40 to 80 volume percent methane have the problem of NOx as a result of higher flame temperatures in the turbine.
It would be economically advantageous to utilize natural gas reserves with 40 to 80 volume percent methane and with large amounts of inert gases and purify such streams or a portion of such streams to provide a fuel for gas turbines at significantly lower cost than by producing pipeline quality natural gas for fuel for gas turbines.
SUMMARY OF THE INVENTION
The invention is directed to a method of fueling gas turbines from natural gas reserves with relatively low methane concentrations of from about 40 to about 80 volume percent and relatively high inert gas concentrations. The invention permits the use of these reserves at significantly lower cost than by producing pipeline natural gas to fuel gas turbines to generate electric power. As described, these reserves currently generally are used only after the removal of impurities to produce pipeline natural gas quality turbine fuel. Also as previously described, the latter current technology is capital intensive, and at current natural gas prices, economically unattractive. The process of the invention can remove the impurities from the gas from the natural gas reserve necessary for protection of the environment, and leaves inert gases in the fuel in an amount which will increase the output of a gas turbine for the generation of power by about 5 to about 20%. In one aspect the process of the invention contemplates leaving the inert gases in the fuel to maximize mass flow through the gas turbine and to increase power output without the expense of producing pipeline quality methane gas and blending additional inert gases into the fuel to additionally enhance the mass flow through the turbine and lower flame temperature to reduce Nox.
In one aspect the process of the invention uses a natural gas stream and process which is being used to produce pipeline quality natural gas. In this aspect during the purification process inert gases are separated from methane gas in the natural gas reserves with from about 40 to about 80 volume percent methane. A separation may be made which removes only such an amount of methane to provide an inert enhanced methane gas blend which is effective for providing an increase in output of power by a gas turbine of by about 5 to about 20% as compared to a turbine fueled with pipeline quality natural gas. The purified methane stream generated by this separation then may be sent for further purification to produce pipeline quality natural gas. Alternatively there may be a general separation of inert gases from the methane gas and the inert gases separated from the methane then are mixed with the natural gas stream which has not had the inert gases removed (or another gas stream with 40 to 80 volume percent methane) in an amount which will increase the output of the gas turbine by about 5 to about 20% as compared to a turbine fueled with pipeline quality natural gas.
In one aspect where nitrogen gas is the primary inert gas, membranes are used to do the primary separation of the inert nitrogen gas from the natural gas and methane therein. Membranes commercially available and sold under the name of Medal from Air Liquide, Houston Tex., are suitable for such separation. This separation may be done only in an amount to increase the output of a turbine as previously described, or the nitrogen separated from the natural gas then is combined with the natural gas reserve to provide and inert enhanced natural gas which will increase the output of the turbine by about 5 to about 20% as compared to a turbine fueled with pipeline quality natural gas.
Membranes may be used to separate carbon dioxide and methane when the carbon dioxide concentration is up to about 45 volume percent. In another aspect where carbon dioxide is the primary inert gas at concentrations above about 45 volume percent, the carbon dioxide is separated from the natural gas reserve containing from about 40 to about 80 volume percent methane cryogenically. In one aspect when the pressure of the natural gas is high, such as greater then about 2500 psig, the high pressure feed gas is flashed to a lower pressure, such as about 500 psig. A Joule Thomson effect on this expansion is in an amount effective to provide a cooling to do a cryogenic separation. When the pressure of the natural gas reserve is low, such as below about 1100 psig the separation may be achieved an external refrigeration of the natural gas reserve to provide the cooling effective for separating the carbon dioxide from the natural gas reserve and the methane there.
In a very important aspect, inert gases are separated from the natural gas reserve and the methane therein to provide a methane gas with less than about 40 volume percent methane. The methane separated from the natural gas reserve then may be sent for further processing to make pipeline equality natural gas. The inert gases separated from the natural gas stream then are mixed back into the natural gas stream from the well in an amount effective for providing a methane/inert gas blend having less than about 40 volume percent methane to provide an inert enhanced methane gas blend. The inert enhanced methane gas blend is blended with hydrogen, or in an important aspect, just enough methane is shifted to hydrogen gas to produce a gas fuel blend of hydrogen/inert gas/methane gas that not only is an acceptable fuel for gas turbines, but the blend is effective for providing flame stability (such as providing the gas with at least 110 BTUs per standard cubic foot of gas) and for producing more power than a standard natural gas having from about 95+ to about 99+ volume percent methane. If required, the hydrogen/inert gas/methane gas blend is dehydrated to remove a sufficient amount of water to provide a flame stable dehydrated hydrogen/inert gas/methane gas blend. In an important aspect, this blend has at least about 6 volume percent hydrogen. The flame stable hydrogen enhanced hydrogen/inert gas/methane gas blend then is used to fuel an electric power producing gas turbine. In this aspect, the method of the invention is effective for increasing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for utilizing gas reserves with low methane... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for utilizing gas reserves with low methane..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for utilizing gas reserves with low methane... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3181670

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.