Method for using and making a fiber array

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091100, C435S287100, C435S287200, C422S082050, C422S082070, C422S082080

Reexamination Certificate

active

06649404

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to micro-arrays for contacting small quantities of chemical species. More specifically, the invention relates to micro-arrays for contacting an oligonucleotide probe with an oligonucleotide target, a reader for reading the micro-array, and a method and apparatus for making the micro-array.
2. Description of Related Art
Presently, micro-arrays are being used for a wide range of applications such as gene discovery, disease diagnosis, drug discovery (pharmacogenomics) and toxicological research (toxicogenomics). A micro-array is an orderly arrangement of immobilized chemical compounds. Micro-arrays provide a medium for matching known and unknown DNA samples based on base-pairing rules. The typical method involves contacting an array of immobilized chemical compounds with a target of interest to identify those compounds in the array that bind to the target. Arrays are generally described as macro-arrays or micro-arrays, the difference being the size of the sample spots. Macro-arrays contain sample spot sizes of about 300 microns or larger whereas micro-arrays are typically less than 200 microns in diameter and typically contain thousands of spots.
DNA micro-arrays, or DNA (gene) chips are typically fabricated by high-speed robotics on glass or nylon substrates, for which probes with known identity are used to determine complementary binding. A “probe” is a tethered nucleic acid with known sequence, whereas a “target” is the free nucleic acid sample whose identity is being detected.
One array-based application that requires very high density miniaturized arrays is sequencing by hybridization (SBH). In one common format of SBH (format II), a spatially-addressable array of the complete set of oligonucleotide probes of length n is constructed. The oligonucleotide probes are typically covalently attached to a flat, solid substrate, such as a glass slide. Each address in the array has a unique n-mer attached thereto, and the sequence of the probe is defined by its spatial address (xy coordinates). The array is contacted with a labeled target nucleic acid under conditions which discriminate between the formation of perfectly complementary probe-target hybrids and hybrids containing mismatches. Thus, only those addresses of the array which have attached thereto oligonucleotide probes that are completely complementary to a portion of the target nucleic acid produce a signal. The array is then scanned for signals, the sequences of complementary probes determined from their spatial addresses, and the sequence of the target nucleic acid determined by overlapping the common sequences of the probes.
Two other SBH formats also exist. In format I SBH, the target nucleic acid is immobilized on a solid support, e.g., a nylon or nitrocellulose filter, and the immobilized target interrogated with labeled probes. Typically, the target is interrogated with a single probe at a time, or alternatively with a plurality of probes, each of which bears a different distinguishable label (this latter mode is termed “multiplexing”). To reduce the number of manipulations required, the target nucleic acid can be spotted onto a filter in a grid or array, and each spot or address in the array interrogated with a single probe or plurality of multiplexed probes.
In yet another format of SBH, (format III), an array of immobilized oligonucleotide probes similar to that used for format II SBH is contacted with an unlabeled target nucleic acid under conditions which discriminate between perfectly complementary and mismatched hybrids. The array is then contacted with a labeled probe under conditions which discriminate between perfectly complementary and mismatched labeled probe target complexes. Following hybridization, the array is subjected to conditions which covalently join probes which are hybridized adjacently to the target (e.g., a ligase). The unligated labeled probe, and optionally target nucleic acid, is then washed away. The array is then scanned for signal. Since the solution-phase probe was labeled, only those addresses where ligation took place produce a signal. The sequence of the target nucleic acid is determined by overlapping the common sequences of the ligated probes.
For a review of the three types of SBH and their respective advantages, see U.S. Pat. Nos. 5,202,231; 5,525,464; WO 98/31836; WO 96/17957 and the references cited therein.
The length of target nucleic acid which can be sequenced using SBH techniques depends on the lengths of the oligonucleotide probes. Generally, sequencing a target nucleic acid a few hundred nucleotides in length requires the oligonucleotide probes to be at least 8 nucleotides in length. Sequencing longer target nucleic acids, or sequencing though regions of tandem repeats, requires even longer probes. Some have estimated that sequencing a target nucleic acid over one thousand nucleotides in length would require oligonucleotide probes of at least 12 to 14 nucleotides in length. Because the methods require the use of complete sets of probes, i.e., every possible sequence of length n, the probe sets required for the method are extremely large. For example, the complete set of 8-mer probes consists of 4
8
or 65,356 unique sequences. The complete set of 10-mer probes consists of 4
10
or 1,048,576 unique sequences and the complete set of 14-mer probes consists of 4
14
or 268,435,456 unique sequences. In order to make the assays practical, the entire probe array must typically be on the order of 1 cm
2
in area.
To meet the needs of applications requiring high-density miniaturized arrays of immobilized compounds, such as SBH and its related applications, two general methods have been developed for synthesizing the immobilized arrays: in situ methods in which each compound in the array is synthesized directly on the surface of the substrate and deposition methods in which pre-synthesized compounds capable of being covalently attached to the surface of the substrate are deposited, typically by way of robot dispensing devices, at the appropriate spatial addresses. The in situ methods typically require specialized reagents and complex masking strategies, and the deposition methods typically require precise robotic delivery of very defined quantities of reagents.
For example, Fodor et al., 1991, Science 251:767-773 describe an in situ method which utilizes photo-protected amino acids and photo lithographic masking strategies to synthesize miniaturized, spatially-addressable arrays of peptides. This in situ method has recently been expanded to the synthesis of miniaturized arrays of oligonucleotides (U.S. Pat. No. 5,744,305). Another in situ synthesis method for making spatially-addressable arrays of immobilized oligonucleotides is described by Southern, 1992, Genomics 13:1008-1017; see also Southern & Maskos, 1993, Nucl. Acids Res. 21:4663-4669; Southern & Maskos, 1992, Nucl. Acids Res. 20:1679-1684; Southern & Maskos, 1992, Nucl. Acids Res. 20:1675-1678. In this method, conventional oligonucleotide synthesis reagents are dispensed onto physically masked glass slides to create the array of immobilized oligonucleotides.
U.S. Pat. No. 5,807,522 describes a deposition method for making micro arrays of biological samples that involves dispensing a known volume of reagent at each address of the array by tapping a capillary dispenser on the substrate under conditions effective to draw a defined volume of liquid onto the substrate.
One of the biggest drawbacks of both the in situ and deposition micro fabrication techniques is the inability to verify the integrity of the array once it has been fabricated. Absent analyzing the compound immobilized at each address, the integrity of the deposition chemistry simply cannot be verified. Such an analysis would be extremely labor intensive, and may even be impossible for extremely high-density arrays, as the quantity of compound immobilized may not be sufficient for analysis and subsequent use.
Moreover, since each array is fabricated de novo, the integrity of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for using and making a fiber array does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for using and making a fiber array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for using and making a fiber array will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.