Chemistry: analytical and immunological testing – Optical result – With fluorescence or luminescence
Reexamination Certificate
1998-12-31
2001-07-03
Alexander, Lyle A. (Department: 1743)
Chemistry: analytical and immunological testing
Optical result
With fluorescence or luminescence
C436S055000, C436S052000, C422S082080, C422S067000
Reexamination Certificate
active
06255118
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a system and method for continuously monitoring and controlling concentration of molecules or chemical species. More specifically, the present invention relates to a system and method for monitoring concentration of fluorescent tracer molecules in industrial water systems. Further, the present invention relates to use of an all solid-state diode-laser or light emitting diode-based fluorometer for monitoring the concentration of fluorescent tracer molecules in aqueous, non-aqueous, and mixed aqueous
on-aqueous systems.
2. Description of the Prior Art
It is generally known to use diode lasers or light-emitting diodes (LED) as solid-state excitation sources for fluorescence. The combination, however, of excitation sources with photodiode detectors is not as common. As early as 1988, a fluorometer from an LED and a photodiode detector was constructed. See, for example, an article by Jones et al. entitled “High Precision Fluorimetry with a Light-Emitting Diode Source,”
Appl. Spectroscopy
42, 1469 (1988). In 1989, a 670 nanometer diode laser was used as an excitation source and a pholomultiplier (PMT) as a detector. See Imasaka et al. “Visible Semiconductor Laser Fluorometry,”
Anal. Chem
. 61, 2285 (1989). Other examples are known in which semiconductor lasers have been combined with conventional PMT detectors. See, for example, Patonay et al. “Semiconductor Lasers in Analytical Chemistry,”
Proceedings of SPIE
-
The International Society for Optical Engineering
1435, 42 (1991); Higashijima et al. “Determination of Amino Acid By Capillary Zone Electrophoresis Based on Semiconductor Laser Fluorescence Detection,”
Anal. Chem
. 64, 711 (1992); and Mank et al. “Visible Diode Laser Induced Fluorescence Detection in Liquid Chromatography after Precolumn Derivatization of Thiols,”
Anal Chem
. 65, 2197 (1993).
In addition, several more recent publications have dealt with fluorescence measurements using LEDs or diode lasers as excitation sources and silicon photodiodes as detectors. See, for example, Hauser et al., “A Solid-State Instrument for Fluorescence Chemical Sensors Using a Blue Light Emitting Diode of High Intensity,”
Meas. Sci. Technol
. 6, 1081 (1995); Wengatz et al., “Immunoassays for Pesticide Monitoring,”
Proceedings of SPIE
-
The International Society for Optical Engineering
2388, 408 (1995); Williams et al., “Instrument to Detect Near-Infra-Red Fluorescence in Solid-Phase Immunoassay,”
Anal Chem
. 66, 3102 (1994); and Kawazumi et al., “Laser Fluorimetry Using A Visible Semiconductor Laser and an Avalanche Photodiode for Capillary Electrophoresis,”
Anal. Sci
. 11, 587 (1995).
Of the above, most of the few known literature references demonstrate the principle of fluorometry using solid-state, low cost excitation sources. Only a few of the existing papers, however, deal with applications of this instrumentation. For example, Higashijima et al. generally disclose the use of fluorescence detectors for electrophoresis; Mank et al. generally disclose the use of fluorescence detectors for liquid chromatography; and Hauser et al. relate to use of fluorescence detectors for chemical-sensing membranes. In addition, Wengatz et al. explore the use of fluorescence detectors for pesticide monitoring.
A number of other techniques are known for monitoring fluorescence, for example, from oil residues on steel sheets (such as taught by Montan et al. in “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,”
Appl. Phys
. B38, 241 (1985)) and for fluorescence analysis of biologically important molecules in turbid or opaque tissue samples (for example, as demonstrated by Winkleman et al. in “Quantitative Fluorescence Analysis in Opaque Suspensions Using Front Face Optics,”
Anal. Chem
. 39, 1007 (1967)). Furthermore, use of an excimer laser to perform fluorescent imaging of paper surfaces is generally taught by Hakkanen et al. in “Laser-Induced Fluorescence Imaging of Paper Surfaces,”
Appl. Spectroscopy
47, 2122 (1993); and use of a diode laser in surface fluorescence geometry is also generally taught, for example, by German Patent No. DE4300723 A1.
Fluorometers currently being used for industrial process monitoring and control are based on gas-lamp excitation sources and photomultiplier tube detectors which require high current, high voltage power supplies. Additionally, these excitation and detection sources do not have the intrinsic reliability of solid-state semiconductor devices.
A need, therefore, exists for an improved instrument constructed as an all solid-state fluorometer including a system and method for the use of such a fluorometer for monitoring the concentration of fluorescent tracer molecules particularly in industrial water systems.
SUMMARY OF THE INVENTION
The present invention provides for improved devices and methods for monitoring the concentration of molecules and chemical treatments in industrial water sample streams.
To this end, in an embodiment of the present invention, a device is provided having a solid-state excitation source to direct light in a specified direction. A sample having a known concentration of molecules is provided wherein the light from the excitation source is directed at the sample such that the light excites fluorescent tracer molecules in the sample and produces fluorescence. A detector receives the fluorescence from the excitation of the sample and produces an output signal proportional to the quantity of fluorescence received on the detector wherein the quantity of fluorescence is further proportional to the concentration of the molecules in the sample. If the concentration of the fluorophore is proportional to non-fluorescing chemical treatments or additives, then the concentration of the chemical treatments or additives can be monitored.
In an embodiment, a lens, though not crucial, may be provided between the sample and the detector to image the fluorescence excited from the sample onto the detector.
In an embodiment, a filter is constructed and arranged between the sample and the detector to reject scattered excitation light from the sample or sample cell.
In an embodiment, an amplifier is constructed and arranged to receive the signal from the detector to produce an amplified output signal.
In an embodiment, a battery provides power necessary to activate the excitation source and detector circuitry. The excitation source may be a diode laser, a light emitting diode or other solid-state light sources.
In an embodiment, DC power from an AC-DC transformer provides power necessary to activate the excitation source and detector circuitry.
In an embodiment, the sample is a portion of an industrial water stream.
In an embodiment, the tracer molecules are fluorophores.
In an embodiment, the monitoring is conducted in real time.
In an embodiment, the excited light is filtered from the sample before detecting fluorescence.
In an embodiment, the amplified output signal is indicative of the fluorescence.
In an embodiment, the excitation source may be a diode laser or a light emitting diode.
In an embodiment, power is provided to the instrument such that the power allows for portability of the instrument.
In an embodiment, the excitation source is separated from a point at which detecting occurs such that the components are approximately at a 90° angle with respect to each other.
In another embodiment, the excitation source is separated from a point at which detection occurs such that the components are approximately at a 45° angle with respect to each other. This allows fluorescence to be detected from turbid or opaque samples, since it is not necessary for the excitation light to penetrate the sample. This embodiment is useful for turbid streams such as ceramic slurries, pulp slurries, or opaque waste water streams containing high masses of solids.
In an embodiment in which the excitation source and detector are separated by 45° for the detection of fluorescence in turbid samples, multiple filters may be used to supp
Alfano Joseph C.
Fehr Michael J.
Godfrey Martin R.
Hoots John E.
Rao Narasimha M.
Alexander Lyle A.
Breininger Thomas M.
Brumm Margaret M.
Nalco Chemical Company
LandOfFree
Method for using an all solid-state fluorometer in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for using an all solid-state fluorometer in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for using an all solid-state fluorometer in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2457042