Method for treating pharmaceutical compositions

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S912000

Reexamination Certificate

active

06455547

ABSTRACT:

The present invention describes in particular a method for stabilizing a pharmaceutical composition by contacting said composition with a polymeric material comprising an antioxidant.
There exists a need to stabilize pharmaceutical compositions, in particular aqueous pharmaceutical compositions and in particular aqueous eye drops, such that they are stable against decomposition caused by heat, light and/or oxygen exposure.
The problem has been solved in accordance to the main claim, namely in particular by the use of a plastic bottle, wherein an antioxidant is comprised. The advantage of such a stabilization consists in the possibility to omit an additional antioxidant and/or a stabilizer otherwise needed in such pharmaceutical compositions. Therefore, such pharmaceutical compositions usually exhibit an enhanced tolerability as compared to ordinarily stabilized compositions, since the antioxidant is not administered to the organism in need of such a pharmaceutical composition.
Consequently, an object of the present invention is a method of stabilizing a pharmaceutical composition in particular in accordance to the main claim, e.g. by use of a plastic bottle comprising an antioxidant.
Within the present invention stabilization relates to the stability of the pharmaceutical composition in total and in particular to the stability of the active ingredient itself when exposed to storage, oxygen and/or air (oxygen radicals), light (UV) and/or heat (e.g. sterilization step at 121° C.). Heat sterilization will equally refer to autoclavation.
The term polymeric material relates to a polymer which is preferably insoluble in the liquid pharmaceutical composition of the present invention and which polymeric material may further be in the form of a random mold. Examples of molds are in particular a pellet, a bead, a rod, a bar, a sheet, a tube, or a vessel and more preferably a bottle. A preferred polymeric material comprises or consists of polyethylene (PE), polypropylene (PP) and/or mixtures thereof.
Consequently, the term plastic bottle relates in particular to a polyethylene (PE) and/or a polypropylene (PP) bottle. These may optionally contain further auxiliaries such as a light absorbing material e.g. titanium dioxide, a color pigment, a UV-absorber and/or the like.
An antioxidant within the terms of the present invention is understood to be a compound selected from the group consisting of 2,2′,2″,6,6′,6″-Hexa-(1,1-dimethylethyl)4,4′,4″-[(2,4,6-trimethyl-1,3,5-benzenetriyl)-trismethylene]-triphenol (Irganox 1330), 1,3,5tris[3,5-di(1,1-dimethylethyl)4-hydroxybenzyl]-1H,3H,5H-1,3,5-triazine-2,4,6-trione, pentaerythrityl tetrakis[3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyl]-propionate], octadecyl-3-[3,5-di(1,1-dimethylethyl)-4-hydroxyphenyl]-propionate, tris[2,4-di(1,1-dimethylethyl)-phenyl]-phosphite, 2,2′-di(octadecyloxy)-5,5′-spirobi(1,3,2-dioxaphosphorinane), dioctadecyl disulphide, didodecyl-3,3′-thiodipropionate, dioctadecyl-3,3′-thiodipropionate, butylhydroxytoluene, ethylene bis[3,3-di[3-(1,1-dimethylethyl)-4-hydroxyphenyl]butyrate] and mixtures thereof. A preferred antioxidant is Irganox 1330.
The amount of antioxidant comprised in the polymeric material is typically in the range of the recommendations of the European Pharmacopoeia and is typically from 0.05-1.0 wt. %, more preferably from 0.1-0.7 wt. % and even more preferably from 0.12-0.55 wt. %.
Other antioxidants, such as ascorbic acid, acetylcysteine, cysteine, sodium hydrogen sulfite, butyl-hydroxyanisole, and alpha-tocopherol acetate may be present too.
An advantage of an antioxidant comprised in a polymeric material in accordance to the present invention is that there is typically only a minimal release or substantially no release of said antioxidant into a pharmaceutical and in particular into an aqueous ophthalmic composition which composition is in contact with said polymeric material. This may typically result in a substantial exclusion of said antioxidant from said pharmaceutical composition.
An antioxidant is typically used during the manufacturing process of a polymeric material in order to avoid decomposition and/or oxidation. Consequently, such a polymer is in particular within the terms of the present invention, namely a polymeric material comprising an antioxidant.
A pharmaceutical active ingredient is e.g. selected from the group consisting of acetylcholine chloride, acyclovir, adrenaline, amethocaine, aminocaproic acid, antazoline phosphate, arachidonic acid, atropine, betaxolol, bupivacaine, carbachol, carteolol, chloramphenicol, chlortetracycline, chymatrypsin, clonidine, cocaine, corynanthine, cromolyn, cyclopentolate, demecarium, dexamethasone, dibutoline, dichlorphenamide, diclofenac, dipivefrin, echodtiophate, ephedrine, erythromycin, ethambutol, etidocaine, eucatropine, fluoromethalone, fluorometholone, gentamycin, gramicidine, H-thymidine, homatropine, hyaluronic acid, hydrocortisone, idoxuridine, indomethacin, isoflurophate, isosorbide, ketorolac, ketotifen, lachesine, levobunolol, levocabastine, lidocaine, lignocaine, medrysone, mepivacaine, methacholine, methazolamide, naphazoline, natamycin, neomycin, neostigmine, noradrenaline, ofloxacin, oxybuprocaine, oxymetazolin, oxyphenonium, pheniramine, phenylephrine, physostigmine, pilocarpine, polymyxin B, prednisolone, proparacaine, proxymethacaine, pyrilamine, retinoic acid, retinol, retinol acetate, retinol palmitate, scopolamine, sorbinil, sulfacetamide, tamoxifen, tetracaine, tetracycline, tetrahydrozoline, timolol, trifluridine, tropicamide, vidarabine, and pharmaceutically acceptable salts, and mixtures thereof.
Preferred pharmaceutically active compounds are selected from the group of betaxolol, chloramphenicol, diclofenac, dipivefrin, ephedrine, erythromycin, gentamycin, indomethacin, ketotifen, levobunolol, levocabastine, ofloxacin, pilocarpine, polymyxin B, prednisolone, retinoic acid, retinol, retinol acetate, retinol palmitate, tetracycline and pharmaceutically acceptable salts thereof.
More preferred pharmaceutically active compounds are selected from the group of, betaxolol, chloramphenicol, diclofenac, ketotifen, levobunolol, levocabastine, pilocarpine, retinoic acid, retinol, retinol acetate, retinol palmitate and pharmaceutically acceptable salts thereof.
Highly preferred is ketotifen, retinoic acid, retinol, retinol acetate, retinol palmitate and pharmaceutically acceptable salts thereof.
Very particular preferred is ketotifen and pharmaceutically acceptable salts thereof.
Within the present invention a pharmaceutical composition is characterized by the carrier wherein said pharmaceutical active compound is mixed, suspended, dissolved and/or partially dissolved and is selected from the group consisting of water, mixtures of water and water-miscible solvents, such as C
1
- to C
7
-alkanols, vegetable oils or mineral oils comprising from 0.5 to 5% by weight hydroxyethyicellulose, ethyl oleate, carboxymethyl-cellulose, polyvinyl-pyrrolidone and other non-toxic water-soluble polymers, in particular for ophthalmic uses, such as, for example, cellulose derivatives, such as methylcellulose, alkali metal salts of carboxy-methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylhydroxypropyl-cellulose and hydroxypropylcellulose, acrylates or methacrylates, such as salts of polyacrylic acid or ethyl acrylate, polyacrylamides, natural products, such as gelatin, alginates, pectins, tragacanth, karaya gum, xanthan gum, carrageenin, agar and acacia, starch derivatives, such as starch acetate and hydroxypropyl starch, and also other synthetic products, such as polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methyl ether, polyethylene oxide, preferably cross-linked polyacrylic acid, such as neutral Carbopol, or mixtures of those polymers. Preferred carriers are water, cellulose derivatives, such as methylcellulose, alkali metal salts of carboxymethylcellulose, hydroxymethylcellulose, hydroxyeth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for treating pharmaceutical compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for treating pharmaceutical compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for treating pharmaceutical compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2875302

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.