Drug – bio-affecting and body treating compositions – Enzyme or coenzyme containing – Transferases
Reexamination Certificate
2000-11-02
2004-04-06
Bugaisky, Gabriele (Department: 1653)
Drug, bio-affecting and body treating compositions
Enzyme or coenzyme containing
Transferases
C424S094100, C424S239100, C514S012200, C514S002600
Reexamination Certificate
active
06716427
ABSTRACT:
BACKGROUND
The present invention relates to methods for treating thyroid disorders. In particular the present invention relates to methods for treating thyroid disorders by administration of a neurotoxin to a patient.
It has been estimated that at least about two hundred million people worldwide are afflicted with a thyroid disorder and women are affected disproportionaly, as compared to men, by a ratio of about ten to one. In the United States, about ten million persons, including ten percent of all women over age 45, have either overactive or underactive thyroid glands. Bayliss et al.,
Thyroid Disease The Facts,
preface, Oxford University Press (1998).
thyroid Function
The thyroid is an endocrine gland comprised of follicle cells and non-follicular or C cells. The follicle cells are capable of making two hormones, triiodothyronine (T
3
), which contains three iodine atoms and thyroxine (T
4
) which contains four. The action of thyroid hormone is concerned principally with the regulation of metabolic rate by, for example, increasing energy production and oxygen consumption by most normal tissues. Synthesis and release of T
3
and T
4
by thyroid cells in influenced by thyroid stimulating hormone (TSH, also called thyrotrophin) made by the pituitary. The C cells can make calcitonin which appears to influence calcium metabolism. Significantly, calcitonin is a potent hypocalcemic agent. Disorders of the thyroid include autoimmune disorders (such as Graves' disease), thyroiditis (inflammation or infection of the thyroid), and cancer, all of which conditions can result in hypothyroidism (as can occur in Hashimoto's thyroiditis) or hyperthyroidism (thyroidtoxicosis, as can occur in Graves' disease). An enlarged thyroid (goiter) can by euthyroid, or a symptom of either hyperthyroidism (thyroidtoxicosis) or hypothyroidism.
Most cases of hyperthyroidism are believed to be due to the action of thyroid stimulating antibodies upon the thyroid as a whole (Graves' disease, diffuse toxic goiter).
Graves' disease has been estimated to occur in
0
.
4
% of the population of the United States, with a lifetime risk of 1%. It is most commonly manifest in the third or fourth decade of rue and the female to male ratio is about 7:1 to about 10:1. The thyroid abnormalities characteristic of Graves' disease apparently result from the action of immunoglobulin of the IgG class on the thyroid. These antibodies may be directed against components or regions of the plasma membrane that include the receptor for thyroid simulating hormone (TSH) itself The principal destabilizing factor resulting in autoimmune thyroid disease appears to be an organ specific defect in suppressor T-lymphocytes. Hyperthyroidism itself appears to have an adverse effect on generalized suppressor T-cell function, and this may be a self-perpetuated or potentiating factor in Graves' disease. Significantly, there is no known cure for Grave's disease, treatment being designed merely to reduce the thyroid's ability to produce thyroid hormones.
Causes of hyperthyroidism besides Graves' disease, include toxic multinodular goiter, toxic adenoma, subacute viral thyroiditis, postpartum thyroiditis, thyroid, gonadal and pituitary tumors and excess pituitary TSH.
The normal thyroid gland weighs about fifteen grams. It is convex anteriorly and concave posteriorly as a result of its relation to the anterolateral portions of the trachea and larynx, to which it is firmly fixed by fibrous tissue. The two lateral lobes of the thyroid extend along the sides of the larynx, reaching the level of the middle of the thyroid cartilage. Each thyroid lobe resides in a bed between the trachea and larynx medially and the carotid sheath and stemocleidomastoid muscles laterally.
The thyroid is composed of an aggregation of spherical or ovate cystlike follicles of variable size. The interfollicular areas are occupied by a highly vascularized network which includes parafollicular cells (C cells) which are responsible for the secretion of calcitonin. Parathyroid hormone (PTH, made by the parathyroid glands), calcitonin (made by the C cells of the thyroid) and dihydroxycholecalciferol (metabolized from vitamin D in the kidney) are the principal hormones concerned with the metabolism of ions such as calcium, phosphate, pyrophosphate, citrate and magnesium, and with the regulation of the metabolism of bone and its organic constituents. In humans, it is believed that calcitonin acts, in a manner antagonistic to PTH, to lower plasma calcium.
The thyroid gland is enveloped by a thickened fibrous capsule; The deep cervical fascia divides into an anterior and a posterior sheath, creating a loosely applied false capsule for the thyroid. Anterior to the thyroid lobes are the strap muscles. Situated on the posterior surface of the lateral lobes of the thyroid gland are the parathyroid glands and the recurrent laryngeal nerves; the latter usually lie in a deft between the tea and the esophagus. The lateral lobes of the thyroid are joined by the isthmus that crosses the trachea. A pyramidal lobe is often present. The pyramidal lobe is a long, narrow projection of thyroid tissue extending upward from the isthmus lying on the surface of the thyroid cartilage. It represents a vestige of the embryonic thyroglossal duct.
Thyroid Vascular Supply
The thyroid has an abundant blood supply. Its four major arteries are the paired superior thyroid art ries, which arise from the external carotid arteries and descend several centimeters in the neck to reach the upper poles of each thyroid lobe, where they branch, and the paired inferior thyroid arteries, each of which arises from the thyrocervical trunk of the subclavian artery, runs medially behind the carotid artery and enters the lower or midpart of the thyroid lobe from behind. A fifth artery, the thyroidea ima, is sometimes present; it arises from the arch of the aorta and enters the thyroid in the midline.
A venous plexus forms under the thyroid capsule. Each lobe is drained by the superior thyroid vein at the upper pole and the middle thyroid vein at the middle part of the lobe, both of which enter the internal jugular vein. Arising from each lower pole are the inferior thyroid veins, which drain directly into the innominate vein.
Thyroid Innervation
Significantly, the thyroid gland receives innervation from both the sympathetic and parasympathetic divisions of the autonomic nervous system. The sympathetic fibers arise from the cervical ganglia and enter with blood vessels, whereas the parasympathetic fibers are derived from the vagus and reach the gland via branches of the laryngeal nerves. The thyroid gland's relation to the recurrent laryngeal nerves and to the external branch of the superior laryngeal nerves is of major surgical significance, since damage to these nerves can lead to a disability of phonation.
Sympathetic innervation of the thyroid cells has been reported to exert a stimulatory effect upon thyroid hormone release through adrenergic receptors for norepinephrine on follicle cells.
Endocrinology
1979;105:7-9. Significantly, the human thyroid is also innervated by cholinergic, parasympathetic fibers.
Cell Tiss Res
1978;195:367-370. See also
Biol Signals
1994;3:?15-25. And other mammalian species are known to also have cholinergicly innervated thyroid cells. See e.g.
Z Mikrosk Anat Forsch Leipzig
1986;100:1,S, 34-38 (pig thyroid is cholinergicly innervated);
Neuroendocrinology
1991;53:69-74 (rat thyroid is cholinergicly innervated);
Endocrinology
1984;114:1266-1271 (dog thyroid is cholinergicly innervated);
It has been reported that stimulation of the vagal nerve increases both thyroid blood flow and thyroid hormone secretion (
Cell Tiss Res
1978;195:367-370), but this is apparently due to the extensive, generalized effect of vagal stimulation which can trigger a number of reflexes ascribed to the whole vagus territory. It is therefore inappropriate to conclude from this observation the vagal stimulation to acts directly upon the thyroid to inc
Allergan Inc.
Baran Robert J.
Bugaisky Gabriele
Donovan Stephen
Voet Martin A.
LandOfFree
Method for treating hypocalcemia does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for treating hypocalcemia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for treating hypocalcemia will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3265022