Drug – bio-affecting and body treating compositions – Enzyme or coenzyme containing – Transferases
Reexamination Certificate
2000-11-01
2003-11-18
Bugaisky, Gabriele (Department: 1653)
Drug, bio-affecting and body treating compositions
Enzyme or coenzyme containing
Transferases
C424S094100, C424S239100, C514S002600, C514S012200
Reexamination Certificate
active
06649161
ABSTRACT:
BACKGROUND
The present invention relates to methods for treating parathyroid disorders. In particular the present invention relates to methods for treating parathyroid disorders by administration of a neurotoxin to a patient.
The adult human typically has four small parathyroid glands, each weighing about 30 to 40 mg, located near the thyroid. The chief cells of the parathyroid glands can make and release parathyroid hormone (PTH), which functions to help maintain serum calcium homeostasis. Parathyroid hormone increases blood calcium level while calcitonin from the thyroid C cells acts to lower it.
Disorders of the parathyroid glands include hyperparathyroidism and hypoparathyroidism. Primary hyperparathyroidism is about twice as prevalent in females as it is in males, and this ratio increases with age. About 1 in 500 females over age of 40 and 1 in 2000 males over the age of 40 has primary hyperparathyroidism. In the United States about 250,000 persons are afflicted with primary hyperparathyroidism.
Primary hyperparathyroidism exists when a disorder of parathyroid tissue itself, as the primary defect, results in the release into the circulation of too much parathyroid hormone. Among the known causes of primary hyperparathyroidism are parathyroid adenoma, hyperplasia and carcinoma. Secondary hyperparathyroidism is a reactive parathyroid hyperplasic phenomenon, which can accompany renal failure. Symptoms of hyperparathyroidism can include nephrolithiasis, bone disease, peptic ulcer, fatigue and hypertension.
Untreated hyperparathyroidism can result in the loss of considerable amounts of bone mass due to the hypercalcemia which arises from an excessive level of circulating parathyroid hormone. Thus a high level of parathyroid hormone causes osteoclastic bone reabsorption which can lead to multiple foci of bone destruction, osteitis fibrosa cystica or von Recklinghausen's disease of bone.
Production of parathyroid hormone by the chief cells of the parathyroid glands is apparently regulated to a significant extent in the normal parathyroid by both free calcium concentration in extracellular fluid and by levels of 1,25 dihydroxyvitamin D (calcitriol). Parathyroid hormone is a single chain, 84 amino acid residue polypeptide which acts upon osteocytes and osteoclasts to increase the rate of release of calcium from bone into blood, apparently by stimulation of osteocytic osteolysis.
The treatment of choice for primary hyperparathyroidism is surgery to remove all or most of the hyperactive parathyroid tissue. Thallium-technetium subtraction scans, ultrasound, selective venous sampling, CT, MRI, and arteriography have been used to localize a parathyroid disorder. Unfortunately, it has been reported that in about one third of parathyroidectomies, surgery fails to cure the hyperparathyroidism because of surgical ineptness to remove the appropriate tissues. Furthermore, excessive removal of parathyroid glands tissue can cause tetany. Complications of parathyroidectomy can include hematoma, vocal cord paralysis, hypocalcemia, and persistent hypercalcemia. Thus, after parathyroidectomy 5% of patients have permanent hypocalcemia, which therefore requires daily oral supplementation or reimplantation of cryopreserved parathyroid tissue.
Significantly, while parathyroid adenoma can be treated by removal of the one abnormal parathyroid gland, removal of multiple parathyroid glands is typically required to treat parathyroid hyperplasia. Furthermore, the cause or causes of primary parathyroid hyperplasia are unknown.
Alternates to surgery for primary hyperparathyroidism include ethanol block and embolization. Block by ethanol injection destroys the parathyroid gland or glands injected and can cause Horner's syndrome and vocal cord paralysis. Addditionally, embolization to the artery supplying an abnormal parathyroid gland while sometimes successful to infarct the parathyroid gland and normalize calcium levels, is a difficult procedure with a limited success rate.
Primary hypoparathyroidism due to deficient PTH secretion can cause a low serum calcium due to a lack of PTH mediated bone resorption and calcium reabsorption by the kidneys. Symptoms of hypocalcemia include neuromuscular irritability and tetany. Intravenous calcium is the treatment of choice for primary hypoparathyroidism. Notably, PTH replacement has also been used to treat primary hypoparathyroidism. Drawbacks to PTH replacement include lack of clinical experience, it must be given by injection and it is expensive.
Parathyroid Innervation
With regard to parathyroid innervation, one view is that the nerves to the parathyroids are only vasomotor, not secretomotor in nature, and that parathyroid activity is controlled solely by variation in blood calcium level. Thus, a rise in blood calcium level inhibits PTH release, while a fall in blood calcium level stimulates PTH release.
Significantly it has been reported that parasympathetic influences inhibit parathyroid hormone secretion, that cholinergic agonists decrease serum PTH and that this effect is blocked by atropine. See e.g.
J. Auto Nerv Syst
1994;48:4-553
, Metabolism
1985;34(7):612-615 and
Brazilian J Med Biol Res
1994;27:573-599.
Additionally, the close anatomic association of the thyroid and parathyroid glands makes it reasonable to assume that the parathyroids are innervated in a manner similar to the thyroid. The two upper parathyroid glands are located adjacent to the posterior surface of the upper or, middle part of the thyroid lobe, often just anterior to the recurrent laryngeal nerve as it enters the larynx. The two lower parathyroid glands are usually found on the lateral or posterior surfaces of the lower part of the thyroid gland or within several centimeters of the lower thyroid pole within the thymic tongue.
It is known that the thyroid gland receives innervation from both the sympathetic and parasympathetic divisions of the autonomic nervous system. The sympathetic fibers arise from the cervical ganglia and enter with blood vessels, whereas the parasympathetic fibers are derived from the vagus and reach the gland via branches of the laryngeal nerves. The thyroid gland's relation to the recurrent laryngeal nerves and to the external branch of the superior laryngeal nerves is of major surgical significance, since damage to these nerves can lead to a disability of phonation.
Sympathetic innervation of the thyroid cells has been reported to exert a stimulatory effect upon thyroid hormone release through adrenergic receptors for norepinephrine on follicle cells.
Endocrinology
1979;105:7-9. Significantly, the human thyroid is also innervated by cholinergic, parasympathetic fibers.
Cell Tiss Res
1978;195:367-370. See also
Biol Signals
1994;3:15-25. And other mammalian species are known to also have cholinergicly innervated thyroid cells. See e.g.
Z. Mikrosk Anat Forsch Leipzig
1986;100:1,S, 34-38 (pig thyroid is cholinergicly innervated);
Neuroendocrinology
1991;53:69-74 (rat thyroid is cholinergicly innervated);
Endocrinology
1984;114:1266-1271 (dog thyroid is cholinergicly innervated);
Significantly, the consensus is that cholinergic, parasympathetic influence upon thyroid hormone secretion by thyroid follicle cells in inhibitory.
Endocrinology
1979;105:7-9
; Endocrinology
1984;114:126-61271
; Peptides
985;6:58-5589
; Peptides
1987;8:893-897, and;
Brazilian J Med Biol Res
994;27:573-599. The direct cholinergic influence upon the thyroid appears to be mediated by muscarinic acetylcholine receptors of thyroid follicle cells since the cholinergic inhibition is blocked by atropine.
Endocrinology
1979;105:7.
Thus, one can conclude that, at least in some circumstances, the deficient PTH secretion of primary hypoparathyroidism is influenced by inhibitory parasympathetic innervation of the parathyroids, while primary parathyroid hyperplasia is influenced by excessive sympathetic stimulation of the parathyroids.
Botulinum Toxin
The anaerobic, gram positive bacterium Clostridium botulinum produces a potent polypeptide neurotoxin, botulinum toxi
Allergan Inc.
Baran Robert J.
Bugaisky Gabriele
Fisher Carlos A.
Voet Martin A.
LandOfFree
Method for treating hypocalcemia does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for treating hypocalcemia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for treating hypocalcemia will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3122791