Method for treating B19 parvovirus infections

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S001000, C514S002600, C435S005000, C435S006120, C435S007100, C435S007200, C435S235100

Reexamination Certificate

active

06268349

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for using Product R as hereinafter defined to treat patients infected with B19 parvovirus.
2. Description of the Related Art
Treatment of viral diseases in humans is a major focus of medical science. While some progress has been made, viral infections are still among the diseases most difficult to treat. Despite growing understanding of viral diseases along with improved techniques for detecting and treating them, few antiviral drugs have proved effective. Some viral diseases such as HIV are life threatening; others such as herpes simplex virus and influenza virus continue to cause severe problems. Further, new viral diseases constantly appear as an inevitable consequence of evolution. Thus, searching for a novel and effective way of treating viral diseases remains imperative and challenging.
Product R
1
emerged as an antiviral product in the 1930's. While it was originally believed to be a product composed of peptone, peptides and nucleic acids (fully defined hereafter), the precise composition remains unidentified. Nevertheless, Product R has demonstrated an ability to inhibit rapidly the course of several viral diseases. It is nontoxic, miscible with tissue fluids and blood sera and free from anaphylactogenic properties.
1. The agent is known under the trademark “Reticulose”, a trademark of Advanced Viral Research Corp.
Despite these early promising clinical reports, systematic studies have rarely been performed to establish clinical utility. Optimum dosages of Product R for treating viral infections as indicated above have been poorly investigated. In fact, most of the clinical reports lacked necessary controls and statistically sufficient samples for evaluating the effectiveness of Product R. Note, two earlier publications challenged that Product R failed to demonstrated antiviral activity. In light of this controversy, the present status of the art of using Product R in treating viral infections remains questionable. Close examination of the development history of Product R reveals no meaningful pattern that could be followed to designate a treatment for a particular viral infection, for viruses causing those infections are extremely diversified in their genetic traits or/and pathogenesis. In addition, earlier clinical applications described Product R only as an agent to be administered alone. Product R has never been suggested to be applied in combination with other antiviral drugs; nor has Product R been administered for a period longer than about two months. Given the limits of prior art, developing new treatment strategies using Product R is desirable.
In developing an antiviral agent, it is well known that inhibitory activity of an antiviral agent against a particular virus cannot be equated with its inhibitory effect against another virus. For example, acyclovir has proved to be specifically effective against herpes simplex 1 and 2 but not against cytomegalovirus (CMV), even though both HSV and CMV belong to the same herpesvirus family, sharing certain genetic features. The specificity of acyclovir rests on the activity of the thymidine kinase gene unique to HSV 1 and 2, indicating that a distinctive feature of each individual virus forms a basis for developing an antiviral agent specifically against this very virus. In other words, treatment of a viral infection using a certain antiviral agent does not necessarily indicate that the same agent will produce the same effect when used for treating other viral infections. The genetic diversity of viruses further mandates that an attempt to be made to discern the effectiveness of a new application of an antiviral agent to a different virus.
An antiviral agent usually interacts with molecules involved in different stages of viral infections: in early events such as adsorption, penetration (internalization), and uncoating; in virus replication characteristic for each virus genome and components of the nucleoprotein complex; and in the chemistry of metabolic pathways. The best targets for inhibition by an antiviral agent are molecules serving a function unique to the virus, with no analogous counterpart in host cells. In order to identify the virus-specific molecule with which a putative antiviral agent interacts, it is important to characterize viruses in terms of particle and genome structure, as well as to define specific biochemical events that occur in infected cells. Although progress has been made in discovering molecules necessary for virus adsorption, replication and metabolism, current knowledge remains insufficient to explain many aspects of these events. Consequently, not every antiviral agent's function is fully defined in terms of its interaction with a target virus through one or a series of the indicated events; much less is understood where an antiviral agent is employed to treat a new viral infection, especially if the antiviral agent has been poorly characterized. Without the knowledge of a virus' genetic traits and the chemical properties of an antiviral agent, treatment of a viral infection becomes unpredictable.
SUMMARY OF THE INVENTION
The object of this invention therefore is to develop a method for treating a patient infected by B19 parvovirus, or exhibiting B19 parvovirus associated syptoms, or having antibodies to B19 parvovirus, by administering parenterally to the patient Product R, an antiviral agent composed of peptides and nucleic acids.
Parvoviruses have interested veterinarians because they are responsible for many serious diseases in animals. B19 Parvovirus, the only parvovirus known to be pathogenic in humans, was discovered in the mid-1970s during the course of investigating laboratory assays for hepatitis B.
Acute infection with B19 parvovirus causes the common childhood exanthem fifth disease (erythema infectiosum) characterized with “slapped cheek” facial erythema and a lacy, reticular, evanescent maculopapular eruption over the trunk and proximal extremities. Because parvovirus is extremely contagious, an epidemic may be recognized in the community. In a single patient, however, fifth disease is often confused with measles and other childhood exanthems.
While parvovirus infection in adults is most frequently asymptomatic or results only in a nonspecific flulike illness, adults with fifth disease more commonly suffer joint pains or frank arthritis than a rash. The patient's symptoms—including the distribution of joints affected, the presence of frank inflammation, and even a positive rheumatoid factor test—mimic rheumatoid arthritis. Postparvovirus arthropathy can persist for weeks, months, or even years. In one clinic 12% of patients with new arthritis had evidence of recent parvovirus infection. Acute parvovirus infection may also resemble fibromyalgia or systemic lupus erythematosus. Recently, evidence of chronic parvovirus infection has been found with necrotizing vasculitis resembling polyarteritis nodose or Wegener's granulomatosis.
In persons with underlying hemolysis, acute parvovirus infection causes transient aplastic crisis, an abrupt cessation of red blood cell production in the bone marrow, characterized by reticulocytopenia, absent erythroid precursors in marrow, and precipitous worsening of anemia. Temporary depression of erythropoiesis is probably a constant feature of acute parvovirus infection. Although suffering from an ultimatley self-limiting illness, the patient with aplastic crisis may be acutely ill. Symptoms may include not only dyspnea and fatigue resulting from severe anemia but also extreme lassitude, confusion, and congestive heart failure.
The pattern of disease that follows parvovirus infection is the result of balance between virus, marrow target cell, and the immune response. Bone marrow depression in parvovirus infection occurs early, during the viremia. Normally, infection is terminated by a neutralizing antibody response. The immune response produces the clinical manifestations of fifth disease, in children a rash illness and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for treating B19 parvovirus infections does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for treating B19 parvovirus infections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for treating B19 parvovirus infections will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2474576

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.