Method for transferring biological material

Chemistry: molecular biology and microbiology – Condition responsive control process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S030000, C435S285100, C435S286200

Reexamination Certificate

active

06350570

ABSTRACT:

The invention relates to a method for transferring biological material arranged, for instance, in a given pattern, wherein the biological material is brought into contact with needles placed on the head of a robot and the biological material is transferred to a support, wherein the needles are hard metal needles fitted with a biocompatible coating. The biocompatible coating preferably consists of metal-nitrogen compounds. Furthermore, preferably, an anticorrosion coating is applied underneath the biocompatible coating. Once the biological material has been arranged in a given pattern, the needles mounted on the robot head are arranged according to the same pattern. Preferably, the pattern corresponds to the pattern of the arrangement of microtitre plate wells. Furthermore, the invention relates to a robot head fitted with the hard metal needles according to the invention. In particular, said robot head particularly forms part of a picking and/or a spotting robot. Finally, the invention relates to the utilization of hard metal needles fitted with a biocompatible coating for transferring, for instance, biological material arranged in a given pattern to a support.
Computer-assisted screening methods are more and more used in biologically or biochemically orientated laboratories. As example, the Human Genome Project has shown there is a need of methods and equipment for the identification and cataloguing of more and more material within shorter and shorter intervals. Robots have been developed in recent years for the screening of gene banks, which have considerably facilitated a systematic screening of the libraries and a subsequent analysis. The robots used in these methods are generally referred to as picking/spotting robots. The currently used picking/spotting robots are capable of picking up biological material and putting it down in a well-aimed way and distributing it. For this purpose, gadgets (needle templates) are used in different designs, for instance, in arrays of 8×12 or 16×24. These needle templates are fitted with high-grade steel needles. The high-grade steel needles have a good corrosion-resisting quality but a low mechanical resistance. The use of picking/spotting robots known in the art, therefore, often leads to mechanical deformations and, thus, to bad hitting results (picking) and thus to time-consuming extra work. The use of spotting needles in spotting robots leads to, for instance on high density filters, bad grids of biological material after deformation of the needles.
The problem underlying the present invention was thus to modify the method known from the prior art in a way that putting down and distribution of biological material in a well-aimed manner is guaranteed when using picking/spotting robots. Furthermore, after having been put down and distributed, the biological material should, of course, maintain its biological characteristics to an extent as large as possible.
This technical problem has been solved by providing the embodiments characterized in the claims. Thus, the invention relates to a method for transferring biological material, wherein the biological material is brought into contact with needles placed on a robot head and the biological material is transferred to a support characterized by the needles being hard metal needles fitted with a biocompatible coating.
Surprisingly, according to the invention, it was found that a method according to the above-mentioned general term renders the desired effect if the high-grade steel pins known from the prior art are replaced by hard metal needles fitted with a biocompatible coating. This measure leads to the fact that a high hitting percentage and long-term use of the used robot heads is guaranteed by the met hod of the invention. The such treated hard metal needles have proved to be corrosion-resistant and to generate a minimized friction in the gadget. They are further characterized by a high abrasion resistance and are wear-resistant. The biocompatible coating resulted in a resistance to wear which was 20 times higher than an ordinary gold coating.
By means of the method according to the invention it was possible to achieve a high accuracy concerning the picking and no mechanical deformation was observed. The modifications and deformations of the picking needle known in the prior art which lead to a deterioration of accuracy due to the change of position in the gadget no longer occur. Therefore, the problem of a computer-controlled correction which had been solved insufficiently in the prior art also becomes irrelevant. For the known correcting systems only correct errors concerning the position of the whole picking head. In the case of crooked needles, a correction by means of software was not possible. Therefore, the method according to the invention allows an optimum utilization of the camera-correction system which corrects, above all, errors concerning the position of the picking head. Due to the minimized friction described above there are altogether fewer cases of disturbance due to stuck needles. The cleaning of the picking head is also unproblematic and can, for example, be performed in water. After all, the higher stability/resistance of the needles allow a denser arrangement on the robot head.
In a preferred embodiment of the method according to the invention the biocompatible coating consists essentially or exclusively of TiN, TiCN, TiAlN or CrN. If titanium nitrite is used as a biocompatible coating, the thickness of layer is, for instance, 4 &mgr;m at 2400 HV (diamond penetrator hardness (DPH)). The titanium nitrite can, for instance, be applied by means of physical deposition in the vapor phase (PVD, Physical Vapor Deposition). Thus, titanium is vaporized by means of electric arch and, simultaneously, nitrogen is added in high vacuum. The coating temperature is normally below 500° C. while there is no structural transformation, no heat casting and no thermal stress. The wear of material is significantly minimized due to the low reactivity of titanium nitrite to ferrous materials. Due to its higher coating hardness the titanium carbon nitrite coating is a good complement to the titanium nitrite coating. It normally exhibits a hardness of 3000 HV (DPH) at a coating density of approximately 3 &mgr;m. The titanium aluminium nitrite coating is chosen because of its high hardness and oxidation resistance under the hardest operating conditions. At a thickness of up to approximately 3 mm it has normally a hardness of 3300 HV (DPH). The use of a chromium nitrate coating having a relatively high hardness in combination with a low brittleness allows for the depositing of thicker layers, too. The hardness of this kind of coated needles is approximately 2000 HV (DPH)with a thickness of layer of up to maximally 50 &mgr;m.
According to the invention mixtures of the above-mentioned biocompatible coatings are used as well.
In a further preferred embodiment of the method of the invention the hard metal needles are ejector pins or clipping punches. The needles or punches can, for instance, be of alloyed cold work steel (WS), for instance, of material having the material numbers 1.2516, 1.2210 or 1.2842 (e.g. DIN 1530/ISO 6751). When using material no. WS 1.2516 the hardness of the needle head is normally 45 HRC±2 HRC (Hardness Rockwell Cowe), whereas the pin shank of the pinpoint has a hardness of normally 60 HRC±2 HRC. In this preferred embodiment these pins are hardened. The heat-resistance is approximately 250° C. After the coating with, for instance, titanium nitrite the ejector pins have a hardness of approximately 2400 HV (DPH). The above-mentioned materials have a retention of hardness of at least 200° C. It is ductile hard tool steel with a medium resistance to wear.
Moreover, high-alloyed tool steel (HWS), for instance, material numbers 1.2601 or 1.2379 can be used. These tool steels have a high resistance to wear and a high retention of hardness. If tool steel having the material number WS 1.2379 is used, the pinpoint/the pin shank has a hardness of normall

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for transferring biological material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for transferring biological material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for transferring biological material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.