Method for transferring and displaying compressed images

Image analysis – Image compression or coding – Adaptive coding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S240000, C358S426010, C369S124060

Reexamination Certificate

active

06453073

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the compression and decompression of digital data and, more particularly, to the reduction in the amount of digital data necessary to store and transmit images.
2. Background of the Invention
Image compression systems are commonly used in computers to reduce the storage space and transmittal times associated with storing, transferring and retrieving images. Due to increased use of images in computer applications, and the increase in the transfer of images, a variety of image compression techniques have attempted to solve the problems associated with the large amounts of storage space (i.e., hard disks, tapes or other devices) needed to store images.
Conventional devices store an image as a two-dimensional array of picture elements, or pixels. The number of pixels determines the resolution of an image. Typically the resolution is measured by stating the number of horizontal and vertical pixels contained in the two dimensional image array. For example, a 640 by 480 image has 640 pixels across and 480 from top to bottom to total 307,200 pixels.
While the number of pixels represents the image resolution, the number of bits assigned to each pixel represents the number of available intensity levels of each pixel. For example, if a pixel is only assigned one bit, the pixel can represent a maximum of two values. Thus the range of colors which can be assigned to that pixel is limited to two (typically black and white). In color images, the bits assigned to each pixel represent the intensity values of the three primary colors of red, green and blue. In present “true color” applications, each pixel is normally represented by 24 bits where 8 bits are assigned to each primary color allowing the encoding of 16.8 million (2
8
×2
8
×2
8
) different colors.
Consequently, color images require large amounts of storage capacity. For example, a typical color (24 bits per pixel) image with a resolution of 640 by 480 requires approximately 922,000 bytes of storage. A larger 24-bit color image with a 2000 by 2000 pixel resolution requires approximately twelve million bytes of storage. As a result, image-based applications such as interactive shopping, multimedia products, electronic games and other image-based presentations require large amounts of storage space to display high quality color images.
In order to reduce storage requirements, an image is compressed (encoded) and stored as a smaller file which requires less storage space. In order to retrieve and view the compressed image, the compressed image file is expanded (decoded) to its original size. The decoded (or “reconstructed”) image is usually an imperfect or “lossy” representation of the original image because some information may be lost in the compression process. Normally, the greater the amount of compression the greater the divergence between the original image and the reconstructed image. The amount of compression is often referred to as the compression ratio. The compression ratio is the amount of storage space needed to store the original (uncompressed) digitized image file divided by the amount of storage space needed to store the corresponding compressed image file.
By reducing the amount of storage space needed to store an image, compression is also used to reduce the time needed to transfer and communicate images to other locations. In order to transfer an image, the data bits that represent the image are sent via a data channel to another location. The sequence of transmitted bytes is called the data stream. Generally, the image data is encoded and the compressed image data stream is sent over a data channel and when received, the compressed image data is decoded to recreate the original image. Thus, compression speeds the transmission of image files by reducing their size.
Several processes have been developed for compressing the data required to represent an image. Generally, the processes rely on two methods: 1) spatial or time domain compression, and 2) frequency domain compression. In frequency domain compression, the binary data representing each pixel in the space or time domain are mapped into a new coordinate system in the frequency domain.
In general, the mathematical transforms, such as the discrete cosine transform (DCT), are chosen so that the signal energy of the original image is preserved, but the energy is concentrated in a relatively few transform coefficients. Once transformed, the data is compressed by quantization and encoding of the transform coefficients.
Optimization of the process of compressing an image includes increasing the compression ratio while maintaining the quality of the original image, reducing the time to encode an image, and reducing the time to decode a compressed image. In general, a process that increases the compression ratio or decreases the time to compress an image results in a loss of image quality. A process that increases the compression ratio and maintains a high quality image often results in longer encoding and decoding times. Accordingly, it would be advantageous to increase the compression ratio and reduce the time needed to encode and decode an image while maintaining a high quality image.
It is well known that image encoders can be optimized for specific image types. For example, different types of images may include graphical, photographic, or typographic information or combinations thereof. As discussed in more detail below, the encoding of an image can be viewed as a multi-step process that uses a variety of compression methods which include filters, mathematical transformations, quantization techniques, etc. In general each compression method will compress different image types with varying comparative efficiency. These compression methods can be selectively applied to optimize an encoder with respect to a certain type of image. In addition to selectively applying various compression methods, it is also possible to optimize an encoder by varying the parameters (e.g., quantization tables) of a particular compression method.
Broadly speaking, however, the prior art does not provide an adaptive encoder that automatically decomposes a source image, classifies its parts, and selects the optimal compression methods and the optimal parameters of the selected compression methods resulting in an optimized encoder that increases relative compression rates.
Once an image is optimally compressed with an encoder, the set of compressed data are stored in a file. The structure of the compressed file is referred to as the file format. The file format can be fairly simple and common, or the format can be quite complex and include a particular sequence of compressed data or various types of control instructions and codes.
The file format (the structure of the data in the file) is especially important when compressed data in the file will be read and processed sequentially and when the user desires to view or transmit only part of a compressed image file. Accordingly, it would be advantageous to provide a file format that “layers” the compressed image components, arranging those of greatest visual importance first, those of secondary visual importance second, and so on. Layering the compressed file format in such a way allows the first segment of the compressed image file to be decoded prior to the remainder of the file being received or read by the decoder. The decoder can display the first segment (layer) as a miniature version of the entire image or can enlarge the miniature to display a coarse or “splash” quality rendition of the original image. As each successive file segment or layer is received, the decoder enhances the quality of the displayed picture by selectively adding detail and correcting pixel values.
Like the encoding process, the decoding of an image can be viewed as a multi-step process that uses a variety of decoding methods which include inverse mathematical transformations, inverse quantization techniques, etc. Conventional decoders are designed to have an inverse function r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for transferring and displaying compressed images does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for transferring and displaying compressed images, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for transferring and displaying compressed images will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902972

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.