Method for the removal of sulfide interference in common...

Liquid purification or separation – Processes – Chemical treatment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S759000

Reexamination Certificate

active

06576143

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to arsenic testing in all matrixes in which sulfide interference is likely to be encountered including groundwater, surface water, drinking water, industrial and municipal wastewater. More particularly, this invention relates to removing interferences caused by the presence of sulfides in the water when testing for arsenic.
BACKGROUND OF THE INVENTION
Arsenic is a common contaminant of groundwater that has been found to cause adverse effects on human health at levels as low as 10 &mgr;g/L. The most common forms of dissolved arsenic are arsenite and arsenate. The chemistry of dissolved arsenic is very similar to that of phosphate, which makes its analytic quantification problematic, because phosphate interferes. The most effective method for eliminating the interference caused by phosphate is by separating the arsenic from the phosphate by reducing the arsenic to arsine gas (AsH
3
). The most common technique for the field detection of arsenic is a modified Gutzeit test. In this test, arsenic is reduced in the presence of zinc and hydrochloric acid to form arsine gas (AsH
3
), as follows:
As
2
O
3
+6 Zn+12 HCl→2 AsH
3
+6 ZnCl
2
+3 H
2
O
H
3
AsO
4
+4 Zn+8 HCl→AsH
3
+4 ZnCl
2
+4 H
2
O
Other combinations of mineral acids and metals may be used in the reduction such as sulfamic acid and zinc, as follows:
As
2
O
3
+6 Zn+12 H
2
NSO
3
H→2 AsH
3
+6 Zn(H
2
NSO
3
)
2
+3 H
2
O
H
3
ASO
4
+4 Zn+8 H
2
NSO
3
H→AsH
3
+4 Zn(H
2
NSO
3
)
2
+4 H
2
O
In the Gutzeit test the liberated arsine gas is then reacted with a detector paper that has been impregnated with mercuric bromide (HgBr). The arsine reacts with the mercuric bromide to form mixed arsenic mercury halogenides and create a yellow to tan to brown color change.
AsH
3
+HgBr→AsH
2
HgBr+As(HgBr)
3
+(etc.)
In the most common photometric method for the detection of arsenic (silver diethyldithiocarbamate method), the generation of arsine is also used to remove interferences. In this method the silver diethyldithiocarbamate is dissolved in pyridine. The generated arsine gas is then bubbled through this solution. Arsine reacts with the silver salt, forming a soluble red complex suitable for photometric measurement.
Unfortunately, during the generation of arsine gas by reduction in these tests, sulfides are also reduced concurrently with the arsenic to form hydrogen sulfide (H
2
S). Hydrogen sulfide also reacts with the indicators for arsenic (mercuric bromide, silver diethyldithiocarbamate, etc.) to form colored complexes that interfere with the detection of arsenic.
Sulfides are commonly found in water samples and can be present in varying amounts. Sulfide is a poisonous by-product of anaerobic decomposition of organic matter and is almost ubiquitous in sewage and industrial wastewater. Sulfide is also commonly present in groundwater, especially hot springs. Waters that contain sulfides are commonly known as “sulfur waters”. Their most noticeable characteristic is their offensive, rotten-egg odor. The threshold odor concentration of H
2
S in clean water is between 0.025 and 0.250 &mgr;g/L. When present to the extent of 1 mg/L, it becomes very offensive.
Groundwater will commonly range from 0-70 mg/L sulfide. Groundwater having higher amounts of sulfide is occasionally encountered, but waters with above 5 mg/L are seldom considered usable.
Sulfide interferes with common methods of arsenic detection on a 1:1 molar ratio. (Molecular weight of As=74.92: Molecular Weight of H
2
S=32.074). Therefore, the levels of sulfide commonly encountered in nature are a serious problem when trying to detect arsenic in the parts per billion range.
The current methods of removing sulfide interference entail passing the arsine gas stream through a scrubber to remove hydrogen sulfide. These scrubbers are usually cotton soaked in lead acetate solution (zinc and copper have also been utilized but have been found to be less efficient). The sulfide reacts with the lead on the cotton to form solid lead sulfide, thus removing the sulfide contaminant from the arsine gas stream.
There are two major drawbacks to this method. First, it is difficult to ensure that a tight seal has been formed that will obligate the passage of all of the gas through the scrubber. The rate of gas evolution must also be controlled to allow adequate contact time for all of the sulfide to react. Secondly, the operator is forced to handle hazardous lead acetate and lead sulfide, and after the test is over, there remains the problem of disposing of these toxic materials.
There has not heretofore been provided a reliable method for the removal of sulfide interference from arsenic tests that is effective and does not utilize hazardous materials.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided an improved test for arsenic in a water sample when sulfides are present. The improvement involves the use of a strong oxidizing agent to oxidize sulfide to sulfate in which form it no longer interferes. The strong oxidant must thereafter be eliminated from the sample to prevent it from interfering in the subsequent reduction step and the evolution of arsine gas. This requires a strong oxidant that is capable of oxidizing sulfide to sulfate and then itself can be easily removed from the sample. Potassium peroxymonopersulfate (which is commercially available from DuPont as Oxone®) satisfies this requirement.
The active ingredient of the Oxone® product is potassium peroxymonopersulfate, KHSO
5
, commonly known as potassium monopersulfate, which is present as a triple salt with the formula 2KHSO
5
.KHSO
4
.K
2
SO
4
(potassium hydrogen peroxymonosulfate sulfate). The oxidation potential of Oxone® is derived from its peracid chemistry; it is the first neutralization salt of peroxymonosulfuric acid H
2
SO
5
(also known as Caro's acid).
The standard electrode potential (E
0
) of Oxone® is shown in the following reaction:
HSO
4

+H
2
O→HSO
5

+2H
+
+2
e

−1.44
v
This potential is high enough for many room temperature oxidations to occur, including the oxidation of sulfide to sulfate. Oxone® has been used to oxidize hydrogen sulfide in waste streams for odor control.
There are other readily available oxidants that have the capability of oxidizing sulfide to sulfate, such as Hydrogen Peroxide (E
0
=−1.766 v). The problem is that they interfere with the second portion of the arsenic test, which is the reduction of arsenic to arsine gas, and they are also dangerous and difficult to handle. Potassium peroxymonopersulfate offers the advantages of being, safe, easy to handle, and also being easy to eliminate from the sample before the reduction step.
Oxone® (i.e. potassium peroxymonopersulfate) is quickly removed from the sample, after all of the sulfide has been oxidized, by the addition of organic amines, which are readily attacked by the Oxone® thus depleting its oxidizing power. Useful compounds for this elimination include ethylenediaminetetraacetic acid {also known as EDTA}, N,N-bis-(hydroxyethyl)-2-aminoethane sulfonic acid {also known as BES}, and N,N-bis-(2-hydroxyethyl) glycine {also known as Bicine}.
Use of Oxone® with an appropriate buffer followed by removal of the Oxone® with one of the above substances allows for the detection of arsenic without interference from sulfide. A 50 mL sample of water containing 5 mg/L sulfide as H
2
S can be effectively cleared of sulfide interference by adding 0.45-0.55 g of a buffer consisting of dipotassium phosphate to adjust the final pH to an appropriate level for sulfide oxidation when the Oxone® is present (pH 6-8). Then 0.6-0.7 g of Oxone® is added to oxidize the sulfide. The Oxone® can then be quickly eliminated by addition of one of the above mentioned amines, for example 0.6-0.7 g of a 1:1 mixture of tetrasodium and disodium EDTA.


REFERENCES:
patent: 5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the removal of sulfide interference in common... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the removal of sulfide interference in common..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the removal of sulfide interference in common... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157028

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.