Method for the production of N-alkenyl-amides

Organic compounds -- part of the class 532-570 series – Organic compounds – Unsubstituted hydrocarbyl chain between the ring and the -c-...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S533000, C540S604000, C546S243000, C548S543000, C548S552000

Reexamination Certificate

active

06673920

ABSTRACT:

The present invention leads to an improved process for preparing N-alkenyl-amides by reacting the corresponding NH-amides with acetylenes in the liquid phase in the presence of basic alkali metal compounds and a cocatalyst.
N-Alkenyl-amides are used as monomers in the manufacture of plastics and paints. Polyvinylamides are used for example as laundry detergent assistants, as auxiliaries in cosmetic and medical products and also for stabilizing and clarifying beers and fruit juices. Polyvinyl-lactams, especially polyvinylpyrrolidone polymers, are widely used, for example as dispersants for pigments, as laundry detergent assistants, as auxiliaries in cosmetic and medical products and also as auxiliaries in textile processing and adhesive technology.
N-Alkenyl-lactams are produced on an industrial scale by reacting the corresponding NH-lactams with acetylenes in the presence of basic catalysts (see W. Reppe et al., Justus Liebigs Ann. Chem., 601 (1956) page 135-8 and DE-Auslegeschrift 1 163 835).
DE-Offenlegungsschrift 3 215 093 discloses a process for vinylating 2-pyrrolidone with ethyne in the presence of basic catalysts and in the additional presence of a polyoxyalkylene compound as cocatalyst. Useful polyoxyalkylene compounds are said to be crown ethers (eg 18-crown-6), polyoxyethylene, polyoxypropylene, selectively capped by alkyl or phenyl groups. Conversions up to 63% and selectivities around 90% are reported, the corresponding yield being not more 57%. The formation of polymeric residues is reduced. However, the cocatalysts mentioned are costly materials which are generally not recoverable, since they have high boiling points and therefore remain in the distillation bottoms together with the polymeric byproducts. In addition, they are not stable in the strongly basic medium of the reaction.
U.S. Pat. No. 5,665,889 describes a method for the production of N-vinyl-2-pyrrolidone from 2-pyrrolidone and ethyne in the presence of basic alkali metal compounds using cocatalysts comprising hydroxy end-capped ether oligomers, for example polytetrahydrofuran, or linear diols having at least 4 carbon atoms, for example, 1,4-butanediol. The vinylation takes place at a temperature ranging from 100 to 200° C., and at a pressure ranging from 7.5 to 30 atm (from 7.6 to 30 bar) in the course of a reaction time of several hours. The use of 1,4-butanediol produced a yield of only 77.2% even after a reaction time of 4 hours. The present inventors have determined that these cocatalysts, which have high boiling points, are generally impossible to separate from the polymeric byproducts or in the case of the use of 1,4-butanediol can be separated from the product of value only by means of inconvenient distillative or chemical methods.
It is an object of the present invention to develop a process for preparing N-alkenyl-amides that does not have the recited disadvantages, that permits yields of more than 80% and that makes the pure product obtainable in a simple manner.
We have found that this object is achieved by a process for preparing N-alkenyl-amides by reacting the corresponding NH-amides with acetylenes in the liquid phase in the presence of basic alkali metal compounds and of a cocatalyst, which comprises using as the cocatalyst diols of the general formula (I)
where X
is branched or unbranched alkylene selected from the group consisting of
where R
1
to R
6
are independently hydrogen or C
1
- to C
4
-alkyl;
or
branched or unbranched cyclic alkylene of 3 to 14 carbon atoms including 3 to 12 ring carbon atoms,
their monoalkenyl ethers, their dialkenyl ethers or mixtures thereof.
The process of the invention provides a way of obtaining N-alkenyl-amides in high selectivity and high yield from the corresponding NH-amides and acetylenes in the presence of basic alkali metal compounds and of an inexpensive cocatalyst which is simple to remove again from the reaction mixture.
An essential aspect of the process according to the invention is the presence of a cocatalyst (I)
where X is branched or unbranched alkylene selected from the group consisting of
where R
1
to R
6
are independently hydrogen or C
1
- to C
4
-alkyl,
or where X is branched or unbranched cyclic alkylene of 3 to 14 carbon atoms including 3 to 12 ring carbon atoms,
and/or its monoalkenyl ethers, its dialkenyl ethers or mixtures thereof.
Cocatalysts (I) useful in the process of the invention include for example 1,2-ethanediol (monoethylene glycol), 1,2-propanediol, 1,2-butanediol, 2,3-butanediol, 2-methyl-1,2-propanediol, 1,2-pentanediol, 2,3-pentanediol, 2-methyl-2,3-butanediol, 1,2-hexanediol, 1,3-propanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,2-cyclopropanediol, 1,2-cyclobutanediol, 1,3-cyclobutanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cycloheptanediol, 1,3-cycloheptanediol, 1,4-cycloheptanediol, 1,2-cyclooctanediol, 1,3-cyclooctanediol, 1,4-cyclooctanediol, 1,5-cyclooctanediol, 2-hydroxymethyl-1-cyclopropanol, 2-hydroxymethyl-1-cyclobutanol, 3-hydroxymethyl-1-cyclobutanol, 2-hydroxymethyl-1-cyclopentanol, 3-hydroxymethyl-1-cyclopentanol, 2-hydroxymethyl-1-cyclohexanol, 3-hydroxymethyl-1-cyclohexanol, 4-hydroxymethyl-1-cyclohexanol, 2-hydroxymethyl-1-cycloheptanol, 3-hydroxymethyl-1-cycloheptanediol, 4-hydroxymethyl-1-cycloheptanol, 2-hydroxymethyl-1-cyclooctanol, 3-hydroxymethyl-1-cyclooctanol, 4-hydroxymethyl-1-cyclooctanol, 5-hydroxymethyl-1-cyclooctanol, 1,1-bis(hydroxymethyl)-cyclopropane, 1,2-bis(hydroxymethyl)-cyclopropane, 1,1-bis(hydroxymethyl)-cyclobutane, 1,2-bis(hydroxymethyl)-cyclobutane, 1,3-bis(hydroxymethyl)-cyclobutane, 1,1-bis(hydroxymethyl)-cyclopentane, 1,2-bis(hydroxymethyl)-cyclopentane, 1,3-bis(hydroxymethyl)-cyclopentane, 1,1-bis(hydroxymethyl)-cyclohexane, 1,2-bis(hydroxymethyl)-cyclohexane, 1,3-bis(hydroxymethyl)-cyclohexane, 1,4-bis(hydroxymethyl)-cyclohexane, 1,1-bis(hydroxymethyl)-cycloheptane, 1,2-bis(hydroxymethyl)-cycloheptane, 1,3-bis(hydroxymethyl)-cycloheptane, 1,4-bis(hydroxymethyl)-cycloheptane, 1,1-bis(hydroxymethyl)-cyclooctane, 1,2-bis(hydroxymethyl)-cyclooctane, 1,3-bis(hydroxymethyl)-cyclooctane, 1,4-bis(hydroxymethyl)-cyclooctane or 1,5-bis(hydroxymethyl)-cyclooctane.
Preference is given to the use of cocatalysts of the formula (Ia)
where Y is linear alkylene (CH
2
) a, where a is 0 or 1,
or where Y is cycloalkylene having 3 to 12 ring carbon atoms,
and/or their monoalkenyl ethers, their dialkenyl ethers or mixtures thereof.
Preferred cocatalysts (I) for the process of the invention include for example 1,2-ethanediol (monoethylene glycol), 1,3-propanediol, 1,1-bis(hydroxymethyl)-cyclopropane, 1,2-bis(hydroxymethyl)-cyclopropane, 1,1-bis(hydroxymethyl)-cyclobutane, 1,2-bis(hydroxymethyl)-cyclobutane, 1,3-bis(hydroxymethyl)-cyclobutane, 1,1-bis(hydroxymethyl)-cyclopentane, 1,2-bis(hydroxymethyl)-cyclopentane, 1,3-bis(hydroxymethyl)-cyclopentane, 1,1-bis(hydroxymethyl)-cyclohexane, 1,2-bis(hydroxymethyl)-cyclohexane, 1,3-bis(hydroxymethyl)-cyclohexane, 1,4-bis(hydroxymethyl)-cyclohexane, 1,1-bis(hydroxymethyl)-cycloheptane, 1,2-bis(hydroxymethyl)-cycloheptane, 1,3-bis(hydroxymethyl)-cycloheptane, 1,4-bis(hydroxymethyl)-cycloheptane, 1,1-bis(hydroxymethyl)-cyclooctane, 1,2-bis(hydroxymethyl)-cyclooctane, 1,3-bis(hydroxymethyl)-cyclooctane, 1,4-bis(hydroxymethyl)-cyclooctane or 1,5-bis(hydroxymethyl)-cyclooctane.
Particular preference is given to the use of 1,2-ethanediol (monoethylene glycol), 1,3-propanediol and 1,4-bis(hydroxymethyl)-cyclohexane and/or its monoalkenyl ether and/or its dialkenyl ether or mixtures thereof. Very particular preference is given to the use of 1,2-ethanediol (monoethylene glycol), 1,4-bis(hydroxymethyl)-cyclohexane and/or its monoalkenyl ether and/or its dialkenyl ether or mixtures thereof.
Preferred alkenyl groups for the alkenyl ethers are branched and unbranched hydrocarbyl radicals having 2 to 6 carbon atoms and a double bond. Particular preference is given to all those ethers which form in situ from the diols mentioned and the acetylenes added. Very particular pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the production of N-alkenyl-amides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the production of N-alkenyl-amides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the production of N-alkenyl-amides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3212364

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.