Method for the production of catalytic RNA in bacteria

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 6, 435 691, 435 703, 435 712, 435 9131, 4351721, 4351723, 4352523, 43525233, C07H 1512, C12Q 168, C12P 2106, C12P 2102

Patent

active

052722627

DESCRIPTION:

BRIEF SUMMARY
This invention relates to a method for the production of catalytic RNA (ribozymes) in cells, including mammalian and bacterial cells. More particularly, the invention relates to synthetic genes which encode a ribozyme, to mammalian and bacterial cells having such genes transformed therein, and to the ribozyme containing expression products of such bacteria. The invention also includes the in vitro and therapeutic use of such expression products.


BACKGROUND OF THE INVENTION

One form of gene expression impairment by RNA-RNA duplex formation has been termed "antisense" inhibition. Exploitation of antisense gene regulation could lead to potent anti-viral therapy. A serious limitation of the antisense approach, especially as it applies to anti-viral activity, is that it is stoichiometric and may require large molar excesses of anti-sense versus target RNA to be effective.
Within recent years, discoveries of ribozymes, e.g., RNAs with enzymatic activities have led to the development of antisense molecules which not only form RNA-RNA hybrids, but catalytically cleave the covalent phosphodiester linkages and turn over large numbers of substrate molecules. Ribozymes can now be targeted to virtually any RNA transcript, and efficient cleavage can be readily achieved in vitro. See, Kim, S. H., et al. Proc. Natl Acad. Sci. U.S.A. 84:8788-8792 (1987); Haseloff, J., et al., Nature 234:585-591 (1988); PCT published application WO/89/05852; Cech, T.R. JAMA 260:3030-3034 (1988); PCT published application WO/88/04300; Jeffries, A. G., et al., Nucleic Acids Research 17:1371-1377 (1989).
U.S. Pat. No. 5,144,019 and application Ser. No. 401,613 describe stable, catalytically efficient ribozymes useful, inter alia, to cleave HIV-1 RNA or any other viral or endogenous cellular RNA in vitro and in vivo, mammalian cells transformed with such ribozymes, vectors useful to accomplish such transformation and the use for human therapy of such ribozymes whether produced synthetically or as expressed by such transformed cells. See Chang, et al. Clinical Biotechnology 2:23-31 (1990) which is incorporated herein by reference.


SUMMARY OF THE INVENTION

The production of large amounts of specifically targeted ribozymes for therapeutic use is problematical. This invention provides a novel method for the large scale production of any ribozyme by expression of a stable RNA molecule into which catalytic RNA has been inserted. Any stable RNA can be utilized. In the preferred practice of the invention, E. Coli is transformed by Tac promoter driven 4.5 S RNA having a catalytic RNA sequence inserted therein. High levels of expression of such fusion RNAs can be achieved by varying the temperature of growth, using mutants of E. Coli or other bacteria which are defective in certain enzymatic activities such as RNAse III, inducing expression with isopropyl thio .beta. galactopyranoside (IPTG) in an appropriate host, preparing a set of nested deletions within the 4.5 S or similar gene to eliminate undesirable folding and by other standard molecular biological techniques.
The invention also includes synthetic genes which encode catalytic RNA, microorganisms transformed with such genes, the catalytic RNA containing expression products of such genes and the in vitro and therapeutic use of such expression products.


DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a vector containing a Tac promoter and a ribozyme fused to an E. Coli 4.5 S RNA gene.
FIG. 2 illustrates the vector shown by FIG. 1 with the transcriptional unit containing the ribozyme depicted by FIG. 1.
FIG. 3 is a Northern analysis showing the expression of an anti-HIV-1 gag ribozyme fused with 4.5 S RNA (lanes a and b) and 4.5 S RNA alone (lane c).
FIG. 4 depicts an ethidium bromide stained gel of an acid-phenol extract of small RNAs overproduced by E. Coli transformants in accordance with the invention.
FIG. 5 depicts a preparative gel including ethidium stained RNAs as shown by FIG. 4. The arrowhead points to the fusion ribozymes.
FIG. 6 is a composite depiction of the RNA folding of the

REFERENCES:
Chem. Abst. 110 (21):187321k, 1988.
Chem. Abst. 112(7):51284j 1989.
M. Baer, et al. Science, 228:999-1002, 1985.
Cameron et al., PNAS 86:9139-9143.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the production of catalytic RNA in bacteria does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the production of catalytic RNA in bacteria, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the production of catalytic RNA in bacteria will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-310132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.