Method for the production of a unique soil adjuvant for...

Chemistry: fertilizers – Processes and products – Organic material-containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C071S026000

Reexamination Certificate

active

06709481

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
This invention relates principally to usage of glutamic acid fermentation solubles, and corn fermentation solubles, for application as a soil adjuvant.
Soil fertility, the ability of the soil to supply nutrients to plants, is a major factor in the production of forages, row crops, and horticultural ornaments. Plants need to be supplied either naturally or artificially with phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K) and nitrogen (N). Applying nutrients to maintain and improve soil fertility becomes necessary as soils are depleted of nutrients by crop removal, leaching, and erosion and as attempts are made to push yields higher and higher.
Modern agricultural and horticultural practice requires artificial supplementation of soils with the nutrients plants need to grow. These nutrients are supplied in blends and marketed under the generic term fertilizer. Commonly, fertilizers are formulated using industrial byproducts. These byproducts often contain contaminants such as heavy metals, which are environmentally damaging. In addition, conventional blends of nitrogen, macro and micronutrients can themselves be environmentally problematic due to their highly soluble nature. Often times, these materials are applied during periods that do not allow for maximum plant uptake or degradation by soil microflora. This causes these materials to leach through the soil or actually run off and become major sources of environmental contamination, seriously polluting ground water, lakes, rivers, and streams. Although encapsulation technology of conventional fertilizers does reduce degradation rate, it does not eliminate entirely, the inherent environmental hazards of these materials. This is because these materials do not contain the full spectrum of nitrogen sources that are required by soil bacteria, molds, and fungi to maximize nitrogen degradation. Attempts to rectify this problem through the supplementation of other nitrogen sources such as animal or poultry waste have not proven successful due to the solubility of the nitrogen contained in these materials and their high content of macro minerals, particularly phosphorus. Government has recognized this problem as a major threat to potable water supplies as well as to fresh and saltwater fisheries and to the overall maintenance of a healthy global ecosystem. Legislation has already been passed to control the rates and times of soil fertilization, but environmental control through the law is expensive and inefficient. One solution is to develop a method for soil fertilization that takes full advantage of soil dynamics through the supplementation of nitrogen in a form that varies in its structural complexity and availability. This material would actually stimulate the growth of soil microflora, which in turn would maximize nutrient availability for plants under cultivation, thus eliminating the risk of run off associated with inefficient nutrient use.
SUMMARY OF THE INVENTION
This invention contemplates the use of a composition which is obtained from glutamic acid fermentation solubles, corn fermentation solubles, or a mixture thereof, and any other related source materials that provide the components of these types of fermentation solubles. The solubles are dried to a maximum moisture content of about 30%, at a low temperature. The solubles are preferably dried to a moisture content somewhere in the vicinity of 14%, more or less, for use as a soil adjuvant. The dried fermentation solubles are then blended with a source of organic and inorganic nitrogen, of variable solubles in the form of nonprotein nitrogen, peptides, amino acids, and intact protein, derived in the preferred embodiment of the invention from glutamic acid fermentation solubles and/or corn fermentation solubles to which a carrier and additional amino acids may be added.
The application of this material to soil will stimulate the growth of both aerobic and anaerobic populations of soil microflora. These bacteria, molds and fungi convert the material into an organic biomass as well as into inorganic components made available at the rates regulated by the action of the microflora themselves. The net result is nutrient availability in a form and rate that maximizes plant growth while simultaneously minimizing nutrient leaching and run off.
DESCRIPTION OF THE PREFERRED EMBODIMENT
I have found that a composition of dried freed amino acids, peptides, organic and inorganic nitrogen, as well as structural fiber and nonstructural carbohydrates as needed is useful as a soil adjuvant that stimulates soil bacterial growth. The soil adjuvant stabilizes soil nutrient dynamics with the specific objective of maximizing plant uptake of nutrients while preventing loss of nutrients through leaching and run off.
In the preferred embodiment of the invention, this composition is obtained from either glutamic acid fermentation solubles, corn fermentation solubles or a mixture thereof. Any other source material that provides the components of these fermentation solubles may be used. Some common sources are fermentation byproducts derived from a fermentation of fungal or bacterial origin. Examples include corn step liquor, corn distiller's solubles, and rye distiller's solubles. The origin of the base materials is not important. A carrier such as wheat middlings, etc., can be included if desired and in view of the drying method used. Any amount of carrier can be used. Typical ratios (wt/wt) of dried solubles to wheat middlings are from about 10:1 to about 1:10 including all values and subranges there between. Either of these solubles alone or individually, blended onto a carrier if necessary, are suitable. When the corn and glutamic acid fermentation solubles are mixed, they are mixed in any proportion, either before or after drying and each optionally on a carrier if mixed dry.
The one or more solubles is then dried to a maximum moisture content of about 30% at low temperature. Moisture contents of 0%, 8%, 14%, etc., are acceptable. Drying methods which may be used include vacuum drying, direct and indirect heat application, spray drying, evaporation, etc. A forced air grain processor, otherwise useful to roast soybeans, is preferred. Regardless of the method used, drying must be done at temperatures which will allow for modification of the solubility of the nitrogen fractions without denaturing them.
I have provided a blended source of organic and inorganic nitrogen of variable solubilities in the form of nonprotein nitrogen, peptides, amino acids and intact protein derived, in the preferred embodiment of the invention, from glutamic acid fermentation solubles and/or corn fermentation solubles to which a carrier and additional amino acids can be added, and which is superior to prior art compositions.
Glutamic acid fermentation solubles and corn fermentation solubles are the liquid effluents having greater than 30 wt. % water (moisture), typically 50-60% from the bacterial fermentation process used to produce monosodium glutamate and lysine hydrochloride, respectively. These processes are well known and common manufacturing processes, and the nomenclature by which these products are defined has been determined by the Association of American Feed Control Officials. Glutamic Acid Fermentation Solubles are comprised of a combination of water, nonprotein nitrogen, primarily in the form of ammonium chloride, peptides and free amino acids derived from the hydrolysis of the microorganisms used to produce the fermentation, glutamic acid and inorganic salts such as MgSO
4
, NaCl, KH
3
PO
4
. Corn Fermentation Solubles are comprised of a combination of water, nonprotein nitrogen, primarily in the form of ammonium sulfate, peptides and free amino acids derived from the hydrolysis of the microorganisms used to produce the fermentation and inorganic salts such as MgSO
4
, NaCl and MnSO
4
.
Any amino acid may be added to the invention mixture described above.
The invention is useful

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the production of a unique soil adjuvant for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the production of a unique soil adjuvant for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the production of a unique soil adjuvant for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.