Method for the molecular destruction of waste-activated...

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S610000, C210S622000, C210S624000, C210S626000, C210S748080, C205S751000, C422S022000

Reexamination Certificate

active

06491820

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to the discovery that the majority of the water contained in municipal waste-water sludge treated by the municipal treatment plants is contained within and between molecular cells. The water molecules contained within the cell, for purposes of this application, shall be referred to as “intra-cellular”, water molecules, while the water molecules between the cells and bound thereat via both mechanical and electrical bonding shall be referred to as “intercellular” water molecules. It has been the discovery that this intra-cellular and intercellular water makes up the majority of the water in municipal waste-water sludge treated at a municipal treatment plant, which intra-cellular and intercellular water is not typically released by conventional, municipal dewatering methods which process the municipal sludge.
The present invention, also, relates to a system, apparatus and method directed to the safe and effective treatment of biologically-active, municipal waste-water sludges, and more, particularly, to a pulsed, electric-field apparatus and related method for the disinfecting of municipal waste-water sludges in an efficient and effective manner at the level of the individual, molecular cells of the waste material, so as to substantially reduce the resulting volume and weight of the waste material which has to be disposed of by the municipality.
Presently, for all municipal waste-water sewage material, or sludge, treatment of the waste-water sludge by the municipality is done in accordance with applicable rules and regulations. However, there remains a residual bio-solids waste material which contains a significant amount of water that has to be eventually disposed of by the municipality in an environmentally-safe manner. Prior to disposing of this bio-solids waste material, the municipality will attempt to dewater this bio-solids waste material to the maximum extent possible, in order to reduce its disposal cost and any environmental impact. Conventional dewatering techniques that are utilized by the municipal wastewater treatment plants are commonly referred to as (i) a “belt filter” type press, which is a system of multiple rollers and mesh belts through which the bio-solids waste material is caused to travel between, and which cooperate to squeeze some of the water from the bio-solids waste material; or (ii) a dedicated, inline, centrifuge apparatus of some sort, which uses centrifugal force to squeeze some of the water from the bio-solids waste material; or (iii) a plate and frame filter press with hydraulic or mechanical drive, which uses mechanical pressure to dewater discrete batches of the bio-solids waste material. On a typical day in a typical treatment-plant, the bio-solids waste sludge that is treated by the municipality will result in a material mixture containing greater than 90% water-content, and less than 10% solids-content prior to the dewatering process by the municipality. Following the dewatering operation, there is nevertheless a relatively high water content remaining in the resulting, residual, bio-solids waste material, which residual will be concentrated to a mixture containing about 65% to 80% water-content and about 20% to 35% solids-content at the output-end of the municipality's waste-water treatment apparatus.
An underlying technical problem not addressed nor appreciated by conventional dewatering techniques is that most of the water remains associated with the biologically-active cells which comprise the residual bio-solids waste material; a significant amount of the total water remains inside the cells of this residual bio-solids waste material. That is, water molecules exist on the outside of the cells of the bio-solids waste material, and water molecules also exist on the inside of the cells of the bio-solids waste material. Also, water molecules are bonded between the cells of the bio-solids waste material. Therefore, since the individual cells of the sludge containing the water are not dewatered using conventional dewatering techniques, as the individuals cells have not been irreparably ruptured as a result of the conventional dewatering techniques currently used, so that most of the water in the aggregate within the matrix structure of each cell, it would be highly advantageous if this previously-dewatered, residual bio-solids waste-material sludge could be further dewatered in a continuous and extended manner by substantially removing the water located within the cellular matrix, in a commercially available process. This new approach to the further dewatering and sludge reduction at the cellular level of the residual bio-solids waste material would result in achieving a substantially-reduced volume and mass of the residual waste material requiring disposition by the municipality at the end of its waste-water treatment cycle. Especially when compared to conventional dewatering techniques presently utilized by municipalities, the reduction in the overall volume and weight associated with this residual bio-solids waste material, will result in a significant cost-savings to each municipality as a result of the expected future costs per ton of disposing substantially less residual bio-solids waste material in an environmentally safe manner, as proscribed by applicable rules and regulations.
After many years of study and public hearings, the EPA has recently promulgated EPA 503 regulations that have changed the applicable rules with respect to the disposition of bio-solids waste material by municipalities. The EPA 503 regulations address and promote the safe and effective disposal of bio-solids waste material by municipalities in accordance with the underlying rational and supporting facts of defining two different classes of residual bio-solids waste material, Class “All” and Class “B”, and of the need to have an underlying, regulatory process which adopts a different, regulatory approach for each of the two classes of residual bio-solids waste material, and, thereafter, closely regulating the acceptable avenues of disposal for each of the two classes of bio-solids waste material. The difference between Class “A” bio-solids waste material and Class “B” bio-solids waste materials is directed to the active burden facing the disposal thereof. Class “A” bio-solids waste material is a biologically-inert, non-active waste material, and there are no limitations on the disposition of Class “A” bio-solids waste material by the municipality. However, Class “B” bio-solids waste material is a biologically-active waste material, which may be pathogenic, and, as a result, the disposition of Class “B” bio-solids waste material by the municipality is accomplished in a regulatory manner that is consistent with a highly controlled and regulated commodity at appropriate dump sites.
Prior to the recent promulgation of EPA 503 regulations, municipally-treated waste-material, both raw and previously dewatered, biologically active, non-sterile, residual bio-solids waste, could be disposed of by the local municipality by lake, ocean or river dumping; this often resulted in the unfortunate result that the various waters used for disposal would become wild with algae bloom, and the like, indicating severe nutrient enrichment of the water, to the detriment of adjacent land owners and downstream water users. Now, EPA 503 regulations effectively prohibit the disposal of any residual bio-solids waste material by municipalities in this manner. After the promulgation of EPA 503 regulations, there are currently only three approved options that can be used for the disposal of bio-solids waste material, namely: (1) incineration; the burning of bio-solids waste material in accordance with existing rules and regulations; (2) landfilling; there are now specialized landfills (e.g., Class D landfills) that to which the municipality can transport the bio-solids waste material for disposal; and (3) land application; where the bio-solids material is used as a fertilizer and/or soil enhancer. Option (3), land application,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the molecular destruction of waste-activated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the molecular destruction of waste-activated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the molecular destruction of waste-activated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2996212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.