Method for the immunological determination of an analyte

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals – Carrier is inorganic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S517000, C436S518000, C436S523000, C436S527000, C436S528000, C436S529000, C436S530000, C436S531000, C436S532000, C436S533000, C436S535000, C436S538000, C436S548000, C436S806000, C436S805000, C435S002000, C435S004000, C435S007100, C435S007920, C435S007930, C435S007940, C435S007950, C435S971000, C435S970000

Reexamination Certificate

active

06479302

ABSTRACT:

The invention relates to a procedure for the immunological determination of an analyte in a sample solution with the aid of magnetic and non-magnetic particles.
Immunological methods for the determination of analytes with magnetic and non-magnetic particles are disclosed, for example, in WO 95/04279. In these methods, the magnetic particles are precipitated in the reaction solution by a magnetic field after the incubation; the analyte is then photometrically determined in the supernatant. JP 05-52849 describes a chromatographic system which is provided with a magnet. The capillary medium here fulfils the task of a filter. The driving force which forces the analyte through the filter or the capillary is the magnetic force.
The known procedures have a number of disadvantages. The magnetic separation of the particles by precipitation in the reaction solution has the disadvantage that a direct photometric, fluorimetric or electrochemical detection of the analyte is not possible without further washing or separation steps. A deficiency of the filtration systems is that the filters or capillaries easily block, viscosity problems occur and the analyte is adsorbed prematurely on the chromatographic material, i.e. before the binding reaction, so that only selected sample material can be reliably analysed.
The present invention is based on the object of avoiding the disadvantages outlined in immunological procedures which operate using magnetic particles, and of making available a very simple and reliable procedure.
The present invention relates to a procedure for the immunological determination of an analyte in a sample with the aid of magnetic particles coated with the analyte to be determined or analyte-specific binding components and directly detectable non-magnetic particles coated with analyte-specific binding components or the analyte to be determined, or of an indirectly detectable non-magnetic substance and incubation of the reaction mixture, which is characterized in that the magnetic particles are then removed from the reaction mixture using a magnetic test strip and the analyte concentration is determined directly.
Preferably, the analyte concentration is determined directly on the magnetic test strip visually or reflectometrically. The determination can also be carried out indirectly by development of a colour reaction or electrochemically on the test strip.
Analyte is especially understood as meaning the diagnostically relevant constituents of body fluids, i.e. haptens or antigens; analyte-specific binding components are understood as meaning monoclonal and polyclonal antibodies.
The magnetic test strips according to the invention can be prepared, for example, from suitable magnetizable pigments similarly to diskettes, audio or video tapes. Very flat permanent magnets are preferably suitable. The use of rare earth metal alloys allows the production of permanent magnets having particularly high residual magnetism. In the simplest case, it is possible to use for the procedure according to the invention a flat permanent magnet which is completely covered with white, smooth card and is sealed with plastic adhesive strips on the edges. The magnetic test strip can be used a number of times by wiping off the magnetic particles from the smooth surface after carrying out the test.
A great advantage of the magnetic strip technology in comparison with the direct conventional coupling of antibodies to the surface of test strips is to be regarded in that the reaction with the analyte initially proceeds homogeneously or quasi-homogeneously. Diffusion problems, which restrict the lower detection range in heterogeneous reactions between test strips and analytes, play virtually no part in the homogeneous medium.
Conversely, in heterogeneous reactions which are often diffusion-limited, various measures are undertaken to improve the substance exchange between reaction surface and analyte solution (filtration of the analyte through the test strip surface). The advantages achievable by these measures, however, cannot compensate for the advantage of the quasi-homogeneous reaction between analyte and small suspended particles with a high surface area (problems as a result of pore diffusion, clogging effects).
Particles which can be used in principle are all commercially obtainable magnetic and non-magnetic particles, which can also be coloured, provided they have a size from 30 nm to 800 m. Suitable particles are inorganic and organic particles, e.g. magnetic particles of iron, nickel, cobalt, manganese, elements of the lanthanide series such as neodymium, erbium etc., particles of magnetic alloys such as aluminium, nickel, cobalt and copper alloys, oxides such as Fe
3
O
4
, CrO
2
, CoO, NiO
2
, Mn
2
O
3
etc., composite materials such as ferrites and organic polymers such as polystyrene.
The procedure according to the invention is especially suitable for the detection of analytes for which specific binding component exists. Implementation takes place, for example, by the known sandwich immunoassay or competitive immunoassay procedures. After the incubation, the magnetic particles are removed with the aid of the magnetic test strip such that the directly detectable non-magnetic particles and the indirectly detectable non-magnetic substance remain in the reaction mixture, provided they are not bound to the magnetic particles. Detection is carried out visually on the surface of the test strip either directly, e.g. by the presence or absence of differently coloured non-magnetic particles, or indirectly, e.g. when the non-magnetic substance is an enzyme, by the development of a colour reaction on the test strip. If the non-magnetic substance is an enzyme, the detection can also be carried out electrochemically on the magnetic test strip. The test strip is then a magnetic electrode.
The direct immunological determination of an analyte with coloured non-magnetic particles by the sandwich method is carried out, for example, in such a way that a monoreagent is incubated with the sample solution. The monoreagent consists of magnetic particles which are coated with analyte-specific, preferably monoclonal antibodies and differently coloured non-magnetic particles, which are also coated with preferably monoclonal antibodies, these antibodies being directed against another epitope of the analyte. The particles are suspended in a suitable buffer solution. If the analyte is present in the sample solution, the differently coloured non-magnetic particles can bind to the magnetic particles. After passage of an adequate reaction time, the magnetic particles are removed from the reaction mixture using a magnetic test strip. The magnetic particles bound to the surface of the test strip are directly evaluated visually by means of a colour scale or using a reflectometer. The colour change on the test strip depends directly on the number of the bound non-magnetic differently coloured particles and is proportional to the analyte concentration. Two wavelength measurements can moreover compensate for inhomogeneities in the attachment of the magnetic particles to the test strip.
The immunological determination by the competitive assay method is carried out, for example, with a bireagent. Reagent 1 contains magnetic particles which are coated with analyte-specific (monoclonal or polyclonal) antibodies, in a suitable buffer solution. Reagent 2 contains differently coloured non-magnetic particles, which are coated with the analyte to be determined, in the same buffer solution. The sample solution is initially incubated with the reagent 1. If the analyte is present in the sample solution, binding sites of the analyte-specific antibodies on the magnetic particles are saturated according to the concentration of the analyte in the sample. After a suitable incubation time, the reagent 2 is added to the reaction mixture. The differently coloured non-magnetic particles coated with the analyte can bind to the magnetic particles, provided the binding sites of the antibodies are not already blocked by the analyte. After passage of a c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for the immunological determination of an analyte does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for the immunological determination of an analyte, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the immunological determination of an analyte will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937900

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.