Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing oxygen-containing organic compound
Reexamination Certificate
2011-04-12
2011-04-12
Raghu, Ganapathirama (Department: 1652)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing oxygen-containing organic compound
C435S136000, C435S193000, C536S023200, C530S350000
Reexamination Certificate
active
07923225
ABSTRACT:
The present invention relates to a method for the enzymatic production of 2-hydroxy-2-methyl carboxylic acids from 3-hydroxy carboxylic acids, where a 3-hydroxy carboxylic acid is produced in an aqueous reaction solution and/or is added to this reaction solution and is incubated. The aqueous reaction solution comprises a unit having 3-hydroxy-carboxylate-CoA mutase activity which has both 3-hydroxy-carbonyl-CoA ester-producing and 3-hydroxy-carbonyl-CoA ester-isomerizing activity and converts the 3-hydroxy carboxylic acid into the corresponding 2-hydroxy-2-methyl carboxylic acid which is isolated as acid or in the form of its salts. In a preferred embodiment, the unit having 3-hydroxy-carboxylate-CoA mutase activity is a unit which includes an isolated cobalamin-dependent mutase and where appropriate a 3-hydroxy-carbonyl-CoA ester-producing enzyme or enzyme system or a microorganism including them. The invention preferably relates to a biotechnological process for producing 2-hydroxy-2-methyl carboxylic acids, where microorganisms which have the desired activities are cultured in an aqueous system with the aid of simple natural products and convert intracellularly formed 3-hydroxy-carbonyl-CoA esters into the corresponding 2-hydroxy-2-methyl carboxylic acids. The invention likewise encompasses the production of unsaturated 2-methyl carboxylic acids, where the 2-hydroxy-2-methyl carboxylic acids obtained are converted by dehydration into the corresponding unsaturated 2-methyl carboxylic acids (methacrylic acid and higher homologues).
REFERENCES:
patent: 5225594 (1993-07-01), Shima et al.
patent: 0 487 853 (1992-06-01), None
patent: 4040897 (1992-02-01), None
Broun et al., Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science, 1998, vol. 282: 1315-1317.
Devos et al., Practical limits of function prediction. Proteins: Structure, Function, and Genetics. 2000, vol. 41: 98-107.
Seffernick et al., Melamine deaminase and Atrazine chlorohydrolase: 98 percent identical but functionally different. J. Bacteriol.,2001, vol. 183 (8): 2405-2410.
Whisstock et al., Prediction of protein function from protein sequence. Q. Rev. Biophysics., 2003, vol. 36 (3): 307-340.
Witkowski et al., Conversion of b-ketoacyl synthase to a Malonyl Decarboxylase by replacement of the active cysteine with glutamine. Biochemistry, 1999, vol. 38: 11643-11650.
Rohwerder, T. et al., “Aquincola tertiaricarbonis L108 isobutyryl-CoA mutase large subunit (icmA) gene, partial cds.”, XP-002460831, and The Alky tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate is Degraded via a Novel Cobalamin-Dependent Mutase Pathway, Applied and Environmental Microbiology, vol. 72, No. 6, pp. 4128-4135, (2006).
Rohwerder, T. et al., “Aquincola tertiaricarbonis L108 isobutyryl-CoA mutase small subunit (icmB) gene, partial cds.”, XP-002460834 and “The Alky tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate is Degraded via a Novel Cobalamin-Dependent Mutase Pathway”, Applied and Environmental Microbiology, vol. 72, No. 6, pp. 4128-4135, (2006).
Rohwerder, T. et al., “Isobutyryl-CoA mutase large subunit (Fragment) Gen names(s) (icmA)”, XP-002460835 and “The Alky tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate is Degraded via a Novel Cobalamin-Dependent Mutase Pathway”, Applied and Environmental Microbiology, vol. 72 and 189, No. 6 and 13, pp. 4128-4135, (2006).
Kane, S.R. et al., “Methylmalonyl-CoA mutase (EC 5.4.99.2). Ordered Locus Name(s) Mpe—B0541”, XP-002460836 and “Whole-Genome Analysis of the Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiophilum PM1”, Journal of Bacteriology, vol. 189, No. 5, pp. 1931-1945 and 4973, (2007).
Rohwerder, T., et al., “Isobutyryl-CoA mutase small subunit (Fragment). Gene name(s) icmB”, XP-002460837 and “The Alky tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate is Degraded via a Novel Cobalamin-Dependent Mutase Pathway”, vol. 72, No. 6, pp. 4128-4135, XP-002460829, (2006).
Rohwerder, Thore et al., “The Alkyl tert-Butyl Ether Intermediate 2-Hydroxyisobutyrate is Degraded via a Novel Cobalamin-Dependent Mutase Pathway”, Applied and Environmental Microbiology, vol. 72, No. 6, pp. 4128-4135, XP-002460829, (2006).
Charles, Trevor C. et al., “Methylmalonyl-CoA mutase encoding gene ofSinorhizobium meliloti”, Gene, an International Journal on Genes and Genomes, Elsevier, vol. 226, No. 1, pp. 121-127, XP-004154477, (1999).
De Raadt, Anna et al., “Chemoselective Enzymatic Hydrolysis of Aliphatic and Alicyclic Nitriles”, J. Chem. Soc., Perkin Trans 1, pp. 137-140, XP009016819, (1992).
Ratnatilleke, Ananda et al., “Cloning and Sequencing of the Coenzyme B12-binding Domain of Isobutyryl-CoA Mutase FromStreptomyces cinnamonensis, Reconstitution of Mutase Activity, and Characterization of the Recombinant Enzyme Produced inEscherichia coli”, The Journal of Biological Chemistry, vol. 274, No. 44, pp. 31679-31685, (1999).
Mueller Roland H.
Rohwerder Thore
Evonik Roehm GmbH
Oblon, Spivak McClelland, Maier & Neustadt, L.L.P.
Raghu Ganapathirama
LandOfFree
Method for the enzymatic production of 2-hydroxy-2-methyl... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for the enzymatic production of 2-hydroxy-2-methyl..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for the enzymatic production of 2-hydroxy-2-methyl... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2675539